• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A study on dynamical system of the Teichmuller modular group represented by a group of rational transformations

Research Project

Project/Area Number 18K03331
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionShimane University

Principal Investigator

Nakanishi Toshihiro  島根大学, 学術研究院理工学系, 教授 (00172354)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsタイヒミュラー空間 / クライン群 / リーマン面 / 双曲幾何 / 双曲多様体 / 離散群 / 双曲幾何学 / 写像類群 / 離散群論 / 3次元双曲多様体 / 複素力学系
Outline of Final Research Achievements

The Teichmuller space of a surface of finite topological type admits a global coordinate system where parameters are lengths of some closed geodesics on the surface. We use this coordinate system with a suitable choice of closed geodesics for the Teichmuller space of the twice punctured torus and obtained a Fuchsian (matrix) representation of a twice punctured torus group and also a rational representation of its mapping class group. When a Fuchsian group of a finite coarea is given, a point of the hyperbolic plane is called exceptional if the number of sides of the Dirichlet fundamental polygon centered at this point is not maximal. With a joint work with Akira Ushijima, we show that the set of exceptional points is uncountable and generalize a result by J. Fera for cocompact Fuchsian group.

Academic Significance and Societal Importance of the Research Achievements

我々の研究は,写像類のタイヒミュラー空間への作用を具体的な有理変換として表現するもので,写像類の反復合成による軌道やその不動点の近傍における挙動などを実際の数値や有理写像をともなって計算することができる。まだ大きくは進歩していないが,タイヒミュラー空間や多変数複素力学系の新しい分野を拓くものである。また3次元双曲多様体論,不連続群論や整数論などに多くの応用をもち,今後の発展が他分野に与える影響は大きいと予想する。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (14 results)

All 2023 2022 2021 2020 2019 2018

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (11 results) (of which Invited: 5 results)

  • [Journal Article] Teichmüller space and the mapping class group of the twice punctured torus2021

    • Author(s)
      Toshihiro NAKANISHI
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 73 Issue: 4 Pages: 1221-1252

    • DOI

      10.2969/jmsj/84998499

    • NAID

      130008106922

    • ISSN
      0025-5645, 1881-1167, 1881-2333
    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Existence of exceptional points for Fuchsian groups of finite coarea2020

    • Author(s)
      Toshihiro Nakanishi and Akira Ushijima
    • Journal Title

      Conformal Geometry and Dynamics

      Volume: 24 Issue: 8 Pages: 164-176

    • DOI

      10.1090/ecgd/353

    • NAID

      120007165527

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Generation of finite subgroups of the mapping class of genus 2 surface by Dehn twists2018

    • Author(s)
      Gou Nakamura and Toshihiro Nakanishi
    • Journal Title

      Journal of Pure and Applied Algebra

      Volume: 印刷中 Issue: 11 Pages: 3585-3594

    • DOI

      10.1016/j.jpaa.2018.01.002

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] おもに種数2の閉曲面のタイヒミュラー空間とクライン群について2023

    • Author(s)
      中西敏浩
    • Organizer
      日本数学会年会特別講演,中央大学
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 2つの退化する例のKontsevich-Zorich コサイクルの明示的導出2023

    • Author(s)
      中西敏浩
    • Organizer
      研究集会「タイヒミュラー空間の力学系」静岡大学
    • Related Report
      2022 Annual Research Report
  • [Presentation] 円周上の曲面束である3次元閉双曲多様体の具体例について2022

    • Author(s)
      中西敏浩
    • Organizer
      東工大複素解析セミナー
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 2つ穴あきトーラスのTeichmuller空間とKlein群2022

    • Author(s)
      中西敏浩
    • Organizer
      愛媛大学解析セミナー
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] いくつかのクライン群の例について2021

    • Author(s)
      中西敏浩
    • Organizer
      Workshop on Potential Theory and Complex Analysis
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 種数2の閉曲面のタイヒミュラー空間とクライン群の例について2021

    • Author(s)
      中西敏浩
    • Organizer
      函数論シンポジウム
    • Related Report
      2021 Research-status Report
  • [Presentation] 2点穴あきトーラス群のタイヒミュラー空間と写像類群2020

    • Author(s)
      中西敏浩
    • Organizer
      研究集会「タイヒミュラー空間と双曲幾何学」
    • Related Report
      2019 Research-status Report
  • [Presentation] Jacobian varieties for Riemann surfaces and tropical curves2020

    • Author(s)
      中西敏浩
    • Organizer
      リーマン面のモジュライ空間の諸相
    • Related Report
      2019 Research-status Report
  • [Presentation] 有限余面積フックス群に対するexceptionalな基点の存在について2020

    • Author(s)
      牛島顕・中西敏浩
    • Organizer
      日本数学会年会
    • Related Report
      2019 Research-status Report
  • [Presentation] 2点穴あきトーラス群の空間の座標系のいくつかの応用2019

    • Author(s)
      中西敏浩
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2019 Research-status Report
  • [Presentation] 種数2の閉曲面のタイヒミュラー空間の諸相2018

    • Author(s)
      中西敏浩
    • Organizer
      Geometry of Riemann surfaces and related topics
    • Related Report
      2018 Research-status Report
    • Invited

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi