• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on potential theory for solving nonlinear problems

Research Project

Project/Area Number 18K03333
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionHiroshima University

Principal Investigator

Hirata Kentaro  広島大学, 先進理工系科学研究科(理), 准教授 (30399795)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywordsポテンシャル論 / 非線形楕円型方程式 / ポテンシャル解析 / 半線形楕円型方程式 / 境界挙動 / 準線形楕円型方程式 / 特異点の除去可能性 / 劣線形楕円型方程式 / 加藤条件 / Hausdorff次元
Outline of Final Research Achievements

In a bounded domain with smooth or Lipschitz boundary, we established the boundary Harnack principle for positive superharmonic functions satisfying a nonlinear inequality, and applied it to obtain two-sided estimates for positive solutions of a superlinear elliptic equation with 0-Dirichlet boundary values and asymptotic estimates for positive solutions with isolated singularities at a boundary point. Furthermore, we clarified the relationship between boundary radial growth rates and the Hausdorff dimension of singular sets on the boundary for positive solutions of a superlinear elliptic equation in the unit ball, and the relationship between growth rates near interior singular sets and removability of such sets. Also, we give a necessary and sufficient condition for a sublinear elliptic equation with measure coefficients to have a positive continuous solution in a general domain.

Academic Significance and Societal Importance of the Research Achievements

Bidaut-Veron氏とVivier氏は,滑らかな有界領域においてLane-Emden方程式の正値解に対する両側評価を与えたが,0-Dirichlet境界値をもつ正値解に対しては下からの評価が無意味なものであり,証明方法も積分核の具体的表示を用いた弱L1理論に基づくものであったためLipschitz領域の場合に適用することができなかった.本研究では,ポテンシャル論の結果・方法を駆使して境界Harnack原理を確立し,先行研究の不備を補完するだけでなく,新たな証明方法を構築することができた.また,解表示を有さないので,増大度と特異点集合のサイズの関係を明らかにすることも意義のあることである.

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (17 results)

All 2022 2021 2020 2019 2018

All Journal Article (8 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 8 results) Presentation (9 results) (of which Int'l Joint Research: 4 results,  Invited: 5 results)

  • [Journal Article] Removable singularities for quasilinear elliptic equations with source terms involving the solution and its gradient2022

    • Author(s)
      Kentaro Hirata
    • Journal Title

      Bull. Braz. Math. Soc. (N.S.)

      Volume: 53 Issue: 3 Pages: 787-800

    • DOI

      10.1007/s00574-022-00283-y

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] The Dirichlet problem for sublinear elliptic equations with source2021

    • Author(s)
      K. Hirata and A. Seesanea
    • Journal Title

      Bull. Sci. Math.

      Volume: 171 Pages: 103030-103030

    • DOI

      10.1016/j.bulsci.2021.103030

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Boundary growth rates and exceptional sets for superharmonic functions on the real hyperbolic ball2021

    • Author(s)
      K. Hirata
    • Journal Title

      J. Geom. Anal.

      Volume: 31 Issue: 11 Pages: 10586-10602

    • DOI

      10.1007/s12220-021-00657-6

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Boundary estimates for superharmonic functions and solutions of semilinear elliptic equations with source2021

    • Author(s)
      K. Hirata
    • Journal Title

      Collect. Math.

      Volume: 72 Issue: 1 Pages: 43-61

    • DOI

      10.1007/s13348-020-00279-1

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Boundary growth rates and the size of singular sets for superharmonic functions satisfying a nonlinear inequality2021

    • Author(s)
      K. Hirata
    • Journal Title

      Arch. Math. (Basel)

      Volume: 116 Issue: 3 Pages: 335-344

    • DOI

      10.1007/s00013-020-01551-3

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Global integrability of supertemperatures2020

    • Author(s)
      Hiroaki Aikawa, Takanobu Hara, Kentaro Hirata
    • Journal Title

      Math. Z.

      Volume: online Issue: 3-4 Pages: 1049-1063

    • DOI

      10.1007/s00209-020-02467-y

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] A priori growth estimates for nonnegative supertemperatures and solutions of semilinear heat equations in a Lipschitz domain2019

    • Author(s)
      Kentaro Hirata
    • Journal Title

      J. Anal. Math.

      Volume: 138 Issue: 1 Pages: 441-463

    • DOI

      10.1007/s11854-019-0046-2

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Two-sided estimates for positive solutions of superlinear elliptic boundary value problems2018

    • Author(s)
      Kentaro Hirata
    • Journal Title

      Bull. Aust. Math. Soc.

      Volume: 98 Issue: 3 Pages: 465-473

    • DOI

      10.1017/s000497271800093x

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Equivalent properties to a priori estimates for positive solutions of quasilinear elliptic equations with reaction terms2022

    • Author(s)
      Kentaro Hirata
    • Organizer
      The POSTECH Conference 2022 on Complex Analytic Geometry
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Positive solutions of semilinear elliptic equations with respect to the Schrodinger equation2021

    • Author(s)
      K. Hirata
    • Organizer
      Asia-Pacific Analysis and PDF seminar
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Boundary estimates for positive solutions of semilinear elliptic equations with source2019

    • Author(s)
      Kentaro Hirata
    • Organizer
      Potential Theory and its Related Fields 2019
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Removable isolated boundary singularities of positive solutions of semilinear elliptic equations in a Lipschitz domain2018

    • Author(s)
      Kentaro Hirata
    • Organizer
      The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Boundary Harnack principle for superharmonic functions satisfying a nonlinear inequality in a Lipschitz domain2018

    • Author(s)
      平田賢太郎
    • Organizer
      第61回函数論シンポジウム
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 孤立境界特異点をもつ半線形楕円型方程式の正値解の存在と挙動2018

    • Author(s)
      平田賢太郎
    • Organizer
      大阪市立大学複素解析セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 半線形楕円型問題の正値解に対する評価2018

    • Author(s)
      平田賢太郎
    • Organizer
      日本数学会2018年度秋季総合分科会
    • Related Report
      2018 Research-status Report
  • [Presentation] 半線形楕円型方程式の正値解に対する境界孤立特異点の除去可能性と拡張解に対する評価2018

    • Author(s)
      平田賢太郎
    • Organizer
      2018年度ポテンシャル論研究集会
    • Related Report
      2018 Research-status Report
  • [Presentation] 半線形楕円型方程式に対するCarleson評価と境界Harnack原理2018

    • Author(s)
      平田賢太郎
    • Organizer
      2018年度ポテンシャル論研究集会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi