• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Cyclic vectors in analytic Hilbert spaces

Research Project

Project/Area Number 18K03335
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionYamaguchi University

Principal Investigator

Izuchi Kouhei  山口大学, 教育学部, 准教授 (90451434)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywordsヒルベルト空間 / 正則関数 / 巡回ベクトル / 不変部分空間 / ハーディ空間 / 関数解析 / 複素解析
Outline of Final Research Achievements

Cyclic vectors in Hilbert spaces of analytic functions have been studied. To study it, it is significant to know the structure of invariant subspaces in the space. Here, we have studied them especially in Hardy spaces, Bergman spaces and some Hilbert spaces of entire functions.
In some Hilbert spaces of entire functions on the n-complex space, we characterized cyclic vectors completely.
Also we studied some invariant subspaces in Hardy space over the bidisk. We characterized the rank of the fringe operators for them.

Academic Significance and Societal Importance of the Research Achievements

正則ヒルベルト空間の巡回ベクトルの研究には数学における重要な問題と関連するものがあり,これらを研究する意義は大きい。特にハーディ空間,ベルグマン空間,フォック空間は正則ヒルベルト空間の中でも基本となる空間であり,研究が最も盛んに行われている空間である。その中で一部ではあるが不変部分空間の性質を明らかにしたことは,今後より重要な問題の解決につながる可能性があり,十分に意義があるものである。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (7 results)

All 2019 Other

All Int'l Joint Research (6 results) Presentation (1 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Int'l Joint Research] 湖南大学(中国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] 華東理工大学(中国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] 湖南大学(中国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] 高麗大学校(韓国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] 湖南大学(中国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] 華東理工大学(中国)

    • Related Report
      2018 Research-status Report
  • [Presentation] Measure zero Rudin type invariant subspaces and ranks of fringe operators2019

    • Author(s)
      Kou Hei Izuchi
    • Organizer
      Spring Central and Western Joint Sectional Meeting
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi