• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on Weyl group invariant multivariate elliptic hypergeometric functions

Research Project

Project/Area Number 18K03339
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionUniversity of the Ryukyus

Principal Investigator

Ito Masahiko  琉球大学, 理学部, 教授 (30348461)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords楕円超幾何関数 / ワイル群 / ルート系 / 補間関数 / セルバーグ積分 / 楕円ガンマ関数 / 多変数超幾何関数 / 楕円超幾何積分 / q-差分方程式 / Lagrange補間関数 / 超幾何積分 / 超球面配置 / ヘッセ行列式 / BC型 / G2型
Outline of Final Research Achievements

Principal investigator Ito and collaborative researcher Masatoshi Nomi (Kobe University) defined the“interpolation function" associated with elliptic hypergeometric functions. We defined“interpolation functions" for type A and type BC, respectively, and obtained the following main results as applications. 1) An extension of the A-type Slater's formula to that of many variables was obtained. 2) An extension of the BC-type Sears-Slater's formula to that of many variables was obtained and the determinant formula for the elliptic hypergeometric integral of type BC was proved. The above are the results in the case of the classical type, and in the case of the exception type, the elliptical gamma function representation of the G2 type elliptic hypergeometric integration was proved.

Academic Significance and Societal Importance of the Research Achievements

本研究では楕円超幾何関数の和公式・変換公式を、楕円超幾何関数が満たす差分方程式とワイル群対称性の2点から説明することを目標とした。差分方程式を得るために楕円超幾何関数に付随する「補間関数」について定義した。このことにより、楕円超幾何関数の和公式・変換公式の予想に対して、証明を与えることができた。数理物理分野の超対称量子場理論における電磁双対性の観点から、電気的、磁気的に定義される2種類の楕円超幾何積分の間に成立する変換公式(予想)が各ルート系において多数発見されているが、その証明には「補間関数」が有効であることもわかった。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (16 results)

All 2022 2020 2019 2018

All Journal Article (8 results) (of which Peer Reviewed: 6 results,  Open Access: 5 results) Presentation (8 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Product of Hessians and Discriminant of Critical Points of Level Function for Hypergeometric Integrals2022

    • Author(s)
      Kazuhiko Aomoto,Masahiko Ito
    • Journal Title

      Proceedings of Science

      Volume: 383 Pages: 009-009

    • DOI

      10.22323/1.383.0009

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Product of Hessians and Discriminant of Critical Points of Level Function Attached to Sphere Arrangement2022

    • Author(s)
      Kazuhiko Aomoto,Masahiko Ito
    • Journal Title

      symmetry

      Volume: 14 Issue: 2 Pages: 374-374

    • DOI

      10.3390/sym14020374

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Elliptic extension of Gustafson's q-integral of type G22020

    • Author(s)
      Masahiko Ito, Masatoshi Noumi
    • Journal Title

      Advances in Mathematics

      Volume: 370 Pages: 107211-107211

    • DOI

      10.1016/j.aim.2020.107211

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] q-Difference Systems for the Jackson Integral of Symmetric Selberg Type2020

    • Author(s)
      Masahiko Ito
    • Journal Title

      SIGMA Symmetry Integrability Geom. Methods Appl.

      Volume: 16 Pages: 113-113

    • DOI

      10.3842/sigma.2020.113

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] q-Difference equations for q-hypergeometric integrals of type G22020

    • Author(s)
      Masahiko Ito, Yamato Takushi
    • Journal Title

      Ryukyu Mathematical Journal

      Volume: 33

    • Related Report
      2020 Research-status Report
  • [Journal Article] A determinant formula associated with the elliptic hypergeometric integrals of type BCn2019

    • Author(s)
      Ito Masahiko、Noumi Masatoshi
    • Journal Title

      Journal of Mathematical Physics

      Volume: 60 Issue: 7 Pages: 071705-071705

    • DOI

      10.1063/1.5094116

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Connection formula for the Jackson integral of type An and elliptic Lagrange interpolation2018

    • Author(s)
      Masahiko Ito, Masatoshi Noumi
    • Journal Title

      SIGMA Symmetry Integrability Geom. Methods Appl.

      Volume: 14

    • DOI

      10.3842/sigma.2018.077

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] 楕円超幾何積分と楕円補間函数 -- q Selberg 積分から楕円 Selberg 積分へ --2018

    • Author(s)
      伊藤雅彦 野海正俊
    • Journal Title

      数理解析研究所講究録

      Volume: 2071

    • Related Report
      2018 Research-status Report
  • [Presentation] 球面配置に付随する超幾何積分の準位関数Fから定まる臨界点におけるFのヘッセ行列式の積について2022

    • Author(s)
      青本和彦 伊藤雅彦
    • Organizer
      日本数学会年会「無限可積分系セッション」(於:埼玉大学)
    • Related Report
      2021 Research-status Report
  • [Presentation] G2型楕円超幾何積分が満たすq差分方程式について2020

    • Author(s)
      伊藤雅彦
    • Organizer
      研究集会「q,q & q」(於:神戸大学)
    • Related Report
      2019 Research-status Report
  • [Presentation] 6パラメータのG2型楕円超幾何積分が満たすq差分方程式系について2020

    • Author(s)
      伊藤雅彦 野海正俊
    • Organizer
      日本数学会年会「無限可積分系セッション」(於:日本大学)
    • Related Report
      2019 Research-status Report
  • [Presentation] Elliptic extension of Gustafson's q-integral of type G22020

    • Author(s)
      Masahiko Ito
    • Organizer
      RMT Seminar, University of Melbourne, Australia
    • Related Report
      2019 Research-status Report
  • [Presentation] Elliptic extension of Gustafson's q-integral of type G22019

    • Author(s)
      Masahiko Ito
    • Organizer
      Elliptic integrable systems, special functions and quantum field theory (NORDITA, Stockholm)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Elliptic extension of Gustafson's q-integral of type G22019

    • Author(s)
      Masahiko Ito
    • Organizer
      15th International Symposium on Orthogonal Polynomials, Special Functions and Applications, OPSFA2019 (Hagenberg, Austria)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] ワイル群不変な q-超幾何積分2019

    • Author(s)
      伊藤雅彦
    • Organizer
      表現論と特殊函数セミナー 2019 沖縄
    • Related Report
      2018 Research-status Report
  • [Presentation] G2型Gustafson q-ベータ積分の楕円化とその無限積表示について2018

    • Author(s)
      伊藤雅彦 野海正俊
    • Organizer
      日本数学会秋季総合分科会「無限可積分系セッション」
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi