• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

New developments of spectral analysis for systems of first order partial differential operators; beyond Dirac and Maxwell

Research Project

Project/Area Number 18K03340
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionUniversity of Hyogo

Principal Investigator

Umeda Tomio  兵庫県立大学, 理学研究科, 特任教授(名誉教授) (20160319)

Co-Investigator(Kenkyū-buntansha) 山岸 弘幸  東京都立産業技術高等専門学校, ものづくり工学科, 准教授 (10448053)
Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsディラック作用素 / マックスウェル作用素 / 極限吸収原理 / 時空大域的評価 / 固有値の有限性 / Dirac 方程式 / Maxwell 方程式 / 1階偏微分方程式系 / 平滑化評価式 / スペクトル / スペクトル解析 / ディラック方程式 / マックスウェル方程式 / 強伝播系
Outline of Final Research Achievements

We consider a new class of first order systems of partial differential equations, which covers both Dirac and Maxwell equations. Since Dirac equations and Maxwell equations are of different types, one usually needs to treat these two in separate manners. In this project, we introduce a new technique which enables us to deal with the new class of first order systems in a unified manner. In particular, we were successful to handle Dirac and Maxwell equations at the same time. More precisely, we established the limiting absorption principles, proved the Hoelder continuity of spectral density, and derived the so-called smoothing estimate (global space time estimates in my language). The finiteness of the eigenvalues in the spectral gap of the perturbed Dirac operator is also studied under suitable decay assumptions on the potential perturbation.

Academic Significance and Societal Importance of the Research Achievements

Dirac方程式は高速で運動する電子を記述し、またMaxwell方程式は電磁気学における基礎方程式である。固体中を高速で移動するDirac電子は半導体などの電子デバイスへの応用が期待されていて、そのために実験・理論計算の両面から研究が進められている。現在、社会的に大きな関心を集めている核融合発電には電磁気学が理論的観点から重要な役割を演じるが、核融合炉内では電子が高速で運動することから相対論的量子力学(Diracの電子理論)の観点も重要である。それゆえ、Dirac方程式、Maxwell方程式を統一的観点から調べる本研究は数学や数理物理学の枠を大きく超えて学術的、社会的な意義を有すると考える。

Report

(6 results)
  • 2023 Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (9 results)

All 2023 2021 2019 2018 Other

All Int'l Joint Research (4 results) Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results) Presentation (3 results) (of which Int'l Joint Research: 2 results,  Invited: 2 results) Funded Workshop (1 results)

  • [Int'l Joint Research] ヘブライ大学(イスラエル)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] ヘブライ大学/アインシュタイン研究所(イスラエル)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] ヘブライ大学/アインシュタイン研究所(イスラエル)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] ヘブライ大学/アインシュタイン研究所(イスラエル)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Spectral theory of first-order systems: From crystals to Dirac operators2021

    • Author(s)
      M. Ben-Artzi, T. Umeda
    • Journal Title

      Reviews in Mathematical Physics

      Volume: 33 Issue: 05 Pages: 2150014-2150014

    • DOI

      10.1142/s0129055x21500148

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Coarea formula and spectral densities2019

    • Author(s)
      楳田登美男
    • Organizer
      第25回超局所解析と古典解析
    • Related Report
      2018 Research-status Report
  • [Presentation] Space-time decay estimates for strongly propagative systems: From Maxwell to Dirac2018

    • Author(s)
      Tomio Umeda
    • Organizer
      Workshop 'Spectral analysis and quantum theory'
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Space-time decay estimates for strongly propagative systems: From Maxwell to Dirac2018

    • Author(s)
      Tomio Umeda
    • Organizer
      Chile-Japan workshop on mathematical physics and partial differential equations
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Funded Workshop] Himeji Conference of Partial Differential Equations 20232023

    • Related Report
      2022 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi