• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on Hamilton-Jacobi flows with initial data of pathological functions

Research Project

Project/Area Number 18K03360
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionUniversity of Toyama

Principal Investigator

Fujita Yasuhiro  富山大学, 学術研究部理学系, 教授 (10209067)

Co-Investigator(Kenkyū-buntansha) 山口 範和  富山大学, 学術研究部教育学系, 准教授 (50409679)
Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
KeywordsHamilton--Jacobi flow / 至る所微分不可能性 / 逆問題 / 正則効果 / 初期値の至る所微分不可能性 / 病的函数 / Hamilton-Jacobi flow / 至る所微分不可能 / 放物線群 / 時間発展型の self-affine性 / 特異性の伝播 / 高木函数 / 2階の中心差分 / 区分的に2次函数 / 自己アファイン性 / 微分不可能 / 粘性解
Outline of Final Research Achievements

The most important aim of this work is to derive nowhere differentiable property of the initial data from some behavior of the Hamilton-Jacobi flows issued from these data. This is a sort of inverse problem. I have achieved this aim by solving this problem affirmatively. The results could be now read in an electric paper of Mathematische Annalen via Open Access. Furthermore, as the partition of the interval [0,1] which is first chosen, we can admit not only the one of equal division but also almost all ones. In the previous papers, we only considered the partition of equal division.
In these senses, I believe that I have succeeded in this work.

Academic Significance and Societal Importance of the Research Achievements

今回の研究結果から得られる学術的な意義は、Hamilton--Jacobi 方程式の初期値問題の解として定義される Hamilton--Jacobi flow における正則効果がかなり「弱い」ことへの再認識である。なぜなら、この正則効果が強ければ、初期値の至る所微分不可能性などの悪い性質も時間とともに一気に解消されて、Hamilton--Jacobi flow から初期値の至る所微分不可能性を見出すことはできなくなると考えられるからである。
これは、今後 Hamilton--Jacobi 方程式の初期値問題の正則効果へのひとつの見方を与えると考え重要な意義であると確信する。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (19 results)

All 2022 2021 2020 2019 2018 Other

All Int'l Joint Research (4 results) Journal Article (6 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 6 results,  Open Access: 3 results) Presentation (6 results) (of which Int'l Joint Research: 3 results,  Invited: 4 results) Remarks (3 results)

  • [Int'l Joint Research] ローマ大学サピエンツァ校(イタリア)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] ローマ大学サピエンツァ校(イタリア)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] ローマ大学(イタリア)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] ローマ大学(イタリア)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Hamilton--Jacobi flows with nowhere differentiable initial data2022

    • Author(s)
      Fujita, Y., Siconolfi, A., Yamaguchi,N.
    • Journal Title

      Mathematische Annalen

      Volume: - Issue: 3-4 Pages: 1061-1084

    • DOI

      10.1007/s00208-021-02353-w

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] A self-affine property of evolutional type appearing in a Hamilton--Jacobi flow starting from the Takagi function2021

    • Author(s)
      Fujita, Y., Hamamuki,N., , Yamaguchi,N.
    • Journal Title

      to appear in Michigan Mathematical Journal

      Volume: 70 Issue: 1 Pages: 1-16

    • DOI

      10.1307/mmj/20195782

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] A self-affine property of evolutional type appearing in a Hamilton--Jacobi flow starting from the Takagi function2021

    • Author(s)
      Fujita, Y., Hamamuki,N., Yamaguchi, N.
    • Journal Title

      Michigan Mathematical Journal

      Volume: -

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] A class of nowhere differentiable functions satisfying some concavity-type estimate2020

    • Author(s)
      Yasuhiro Fujita, Nao Hamamuki, Antonio Siconolfi, Norikazu Yamaguchi
    • Journal Title

      Acta Mathematica Hungarica

      Volume: 160 Issue: 2 Pages: 343-359

    • DOI

      10.1007/s10474-019-01007-3

    • Related Report
      2020 Research-status Report 2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] All the generalized characteristics for the solution to a Hamilton--Jacobi equation with the initial data of the Takagi function2020

    • Author(s)
      Fujita, Y., Hamamuki,N., , Yamaguchi,N.
    • Journal Title

      SN Partial Differential Equations and Applications "Viscosity solutions - Dedicated to Hitoshi Ishii on the award of the 1st Kodaira Kunihiko Prize"

      Volume: 1:38 Issue: 6 Pages: 1-20

    • DOI

      10.1007/s42985-020-00039-7

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] New Sharp Gagliardo--Nirenberg--Sobolev Inequalities and an Improved Borell--Brascamp--Lieb Inequality2020

    • Author(s)
      Bolley, F., Cordero-Erausquin, D., Fujita, Y., Gentil, I., Guillin, A.
    • Journal Title

      International Mathematics Research Notices, IMRN

      Volume: 2020 Issue: 10 Pages: 3042-3083

    • DOI

      10.1093/imrn/rny111

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] 高木函数を初期値とする Hamilton-Jacobi 方程式における特異性の伝播2020

    • Author(s)
      藤田 安啓、山口 範和、浜向 直
    • Organizer
      日本数学会2020年度秋季総合分科会, 函数方程式分科会 学会は中止(講演は成立), 熊本大学
    • Related Report
      2020 Research-status Report
  • [Presentation] 至る所微分不可能な函数と Hamilton-Jacobi flow2019

    • Author(s)
      Fujita, Y.
    • Organizer
      福岡大学解析セミナー 2019.12.07
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Hamilton-Jacobi 方程式に現れる時間発展型のself-affine 性2019

    • Author(s)
      Fujita, Y.
    • Organizer
      日本数学会2019年度秋季総合分科会, 函数方程式分科会 2019.09.18
    • Related Report
      2019 Research-status Report
  • [Presentation] A self-affine property appearing in a Hamilton--Jacobi flow starting from the Takagi function2019

    • Author(s)
      Fujita, Y.
    • Organizer
      New trends in Hamilton-Jacobi: PDE,Control,Dynamical Systems and Geometry, 2019.07.01-06, Fudan University, Shanghai, China
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 1.A geometrical characterization of a class of nowhere differentiable functions2018

    • Author(s)
      Y.Fujita
    • Organizer
      International Conference "Viscosity Solutions and Related Topics", 東北大学理学研究科
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 2.A class of everywhere continuous and nowhere differentiable functions and its connection with a Hamilton-Jacobi equation2018

    • Author(s)
      Y.Fujita
    • Organizer
      The tenth meeting on Probability and PDE,, 津田大学
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] 藤田研究室のホームページ

    • URL

      https://www.sci.u-toyama.ac.jp/~yfujita/index.html

    • Related Report
      2021 Annual Research Report 2020 Research-status Report
  • [Remarks] 藤田研究室のホームページ

    • URL

      http://www.sci.u-toyama.ac.jp/~yfujita/

    • Related Report
      2019 Research-status Report
  • [Remarks] 藤田研究室のホームページ

    • URL

      http://www.sci.u-toyama.ac.jp/~yfujita/index.html

    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi