• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Variational approaches to some class of quasilinear elliptic equations

Research Project

Project/Area Number 18K03362
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionShizuoka University

Principal Investigator

Adachi Shinji  静岡大学, 工学部, 教授 (40339685)

Co-Investigator(Kenkyū-buntansha) 柴田 将敬  名城大学, 理工学部, 准教授 (90359688)
渡辺 達也  京都産業大学, 理学部, 教授 (60549749)
Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords準線形楕円型方程式 / 変分解析 / 正値解 / 漸近挙動 / 非線形楕円型方程式 / 可解性 / 半線形楕円型方程式 / 正値解の存在 / 半線形楕円型方程式の可解性 / 増大度条件 / アプリオリ評価 / 楕円型方程式の可解性 / 特異摂動問題 / 準線形楕円型偏微分方程式 / 漸近解析 / 一意性 / 楕円型偏微分方程式 / 準線形方程式 / 軌道安定性
Outline of Final Research Achievements

By using variational methods, I studied the uniqueness of positive solutions and its asymptotic behavior for some class of quasilinear elliptic equation. Since this quasilinear elliptic equation has a dual variational structure, I could transform quasilinear elliptic equation into a semilinear one. As a byproduct of this approach, I also could extend previous works on the uniqueness of positive solutions for some semilinear elliptic equations of scalar field type. As for the asymptotic behavior, I found that an appropriate self-similar transformation of positive solution converges to the Talenti function, and the asymptotic profile is completely revealed.
I also clarified the existence of positive solution and its asymptotic behavior for semilinear elliptic equations that do not impose any growth condition at infinity.

Academic Significance and Societal Importance of the Research Achievements

近年臨界点理論の発展に伴い,準線形楕円型方程式への変分的手法の適用について活発に研究されるようになり,特にプラズマ物理学に端を発するシュレディンガー方程式の定在波解を与える準線形楕円型方程式の変分的研究が当該分野の主題のひとつとなっている。本研究ではこの方程式の解構造,特に正値解の一意性およびその漸近挙動,漸近的プロファイルを明らかにした。この研究成果は従来の優線形劣臨界増大度の非線形項を持つ半線形楕円型方程式に対する研究にも新たな切り口を与えた。また,数学的厳密化は物理学的応用研究の発展にも寄与できる大きな意義のある研究である。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (16 results)

All 2023 2022 2021 2020 2019 2018

All Journal Article (6 results) (of which Peer Reviewed: 6 results) Presentation (10 results) (of which Int'l Joint Research: 2 results,  Invited: 7 results)

  • [Journal Article] Existence and asymptotic behavior of positive solutions for a class of locally superlinear Schr?dinger equation2022

    • Author(s)
      Adachi Shinji, Ikoma Norihisa, Watanabe Tatsuya
    • Journal Title

      manuscripta mathematica

      Volume: - Issue: 3-4 Pages: 933-970

    • DOI

      10.1007/s00229-022-01428-5

    • Related Report
      2023 Annual Research Report 2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] G-invariant positive solutions for a class of locally superlinear Schroedinger equations2022

    • Author(s)
      Adachi Shinji、Watanabe Tatsuya
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: 507 Issue: 1 Pages: 125765-125765

    • DOI

      10.1016/j.jmaa.2021.125765

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Uniqueness of asymptotic limit of ground states for a class of quasilinear Schrodinger equation with H^1-critical growth in R^3,2020

    • Author(s)
      Shinji Adachi, Masataka Shibata, Tatsuya Watanabe
    • Journal Title

      Applicable Analysis

      Volume: - Issue: 2 Pages: 671-691

    • DOI

      10.1080/00036811.2020.1757079

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Asymptotic property of ground states for a class of quasilinear Schrodinger equation with H^1-critical growth2019

    • Author(s)
      Adachi Shinji、Shibata Masataka、Watanabe Tatsuya
    • Journal Title

      Calculus of Variations and Partial Differential Equations

      Volume: 58 Issue: 3

    • DOI

      10.1007/s00526-019-1527-y

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Asymptotic property of ground states for a class of quasilinear Schrodinger equations with $H^1$-critical growth2019

    • Author(s)
      Shinji Adachi, Masataka Shibata, Tatsuya Watanabe
    • Journal Title

      Calculus of Variations and Partial Differential Equations

      Volume: - Issue: 4 Pages: 1-22

    • DOI

      10.1016/s0252-9602(18)30803-8

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] A note on the uniqueness and non-degeneracy of positive radial solutions for semilinear elliptic problems and its application2018

    • Author(s)
      Shinji Adachi, Masataka Shibata, Tatsuya Watanabe
    • Journal Title

      Acta Mathematica Scientia

      Volume: 38B Pages: 1121-1142

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Sobolev 臨界型の半線形楕円型方程式に対する基底状態解の存在について2023

    • Author(s)
      足達慎二
    • Organizer
      日本数学会秋季総合分科会函数方程式論分科会
    • Related Report
      2023 Annual Research Report
  • [Presentation] On the existence of ground state solutions to some elliptic equations with Sobolev critical growth2023

    • Author(s)
      Shinji Adachi
    • Organizer
      Non-compactness phenomena on critical problems and related topics
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] On the existence and asymptotic behavior of positive solutions for a class of locally superlinear elliptic equation2023

    • Author(s)
      Shinji Adachi
    • Organizer
      Workshop on Variational Methods and Functional Inequalities (OCAMI)
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 局所的優線形な非線形楕円型方程式の正値解の存在と漸近挙動について2022

    • Author(s)
      足達慎二
    • Organizer
      第181回神楽坂解析セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] On the existence and asymptotic behavior of positive solutions for some elliptic equation with locally superlinear nonlinearity2022

    • Author(s)
      Shinji Adachi
    • Organizer
      Workshop on recent progress in standing waves for nonlinear Schrodinger equations
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 半線形楕円型方程式の正値解の存在について2021

    • Author(s)
      足達慎二
    • Organizer
      RIMS共同研究(公開型)偏微分方程式の解の幾何的様相
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 局所的優線形なシュレディンガー型方程式の群不変正値解の存在について2021

    • Author(s)
      足達慎二,渡辺達也
    • Organizer
      日本数学会秋季総合分科会函数方程式論分科会
    • Related Report
      2021 Research-status Report
  • [Presentation] G-invariant positive solutions for some semilinear elliptic equations and their applications2019

    • Author(s)
      Shinji Adachi
    • Organizer
      非線形微分方程学術検討会
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Asymptotic profiles of ground states for a class of quasilinear elliptic equations2018

    • Author(s)
      Shinji Adachi
    • Organizer
      JSPS Joint Research Projects “Variational study of nonlinear PDEs”
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Asymptotic property of ground states for a class of quasilinear Schrodinger equation with $H^1$-critical growth2018

    • Author(s)
      柴田 将敬
    • Organizer
      日本数学会 2018 年度秋季総合分科会 函数方程式論分科会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi