• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Elucidation of structure of solutions to chemotaxis systems with non-linear sensitivity functions

Research Project

Project/Area Number 18K03386
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionFukuoka University

Principal Investigator

Senba Takasi  福岡大学, 理学部, 教授 (30196985)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords走化性方程式系 / 知覚関数 / 時間大域的存在 / 爆発 / 非線形知覚関数 / 走化性方程式 / 有界性 / 知覚函数 / 時間大域解 / 爆発解
Outline of Final Research Achievements

We get some results on time-global existence and finite-time blowup of solutions to chemotaxis systems with nonlinear sensitivity functions. In particular, we concentrated our study in the case where sensitivity functions are positive constants times the logarithmic function. We clarify that those chemotaxis system do not have blowup solutions, if constants of logarithmic sensitivity functions are less than a certain value. We say the value threshold number. In this study, we use solutions to a simplified system as auxiliary functions. This argument is found by our research.
On blowup of solutions, it is known that those systems have finite-time blowup solutions if constants of logarithmic sensitivity functions are bigger than 2 times threshold number. We construct finite-time blowup solutions to those systems also in the case where the constant is a certain value between threshold number and 2 times threshold number.

Academic Significance and Societal Importance of the Research Achievements

線形の知覚関数を持つ走化性方程式系の解の性質に関しては解の時間大域的存在及び爆発の両面から研究が進んでおり、リアプノフ関数がその研究に重要な役割を果たしている。一方、非線形知覚関数を持つ走化性方程式系のリアプノフ関数は発見されておらず、そのため研究は遅れており、その研究には今まで用いられた手法とは別の手法の発見が重要であった。本研究に用いられた補助関数を用いる手法によって非線形知覚関数を持つ走化性方程式系の研究が進展することが期待できる。さらに、走化性方程式系は生物学的な現象を背景としており、非線形知覚関数の中でも対数関数は生物学のモデルの中で重要な位置づけとなっている。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (12 results)

All 2024 2022 2019 2018 2017

All Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results,  Open Access: 1 results,  Acknowledgement Compliant: 1 results) Presentation (7 results) (of which Int'l Joint Research: 1 results,  Invited: 5 results) Funded Workshop (1 results)

  • [Journal Article] Global existence and infinite time blow-up of classical solutions to chemotaxis systems of local sensing in higher dimensions2022

    • Author(s)
      Kentarou Fujie, Takasi Senba
    • Journal Title

      Nonlinear Analysis

      Volume: 222 Pages: 1-7

    • DOI

      10.1016/j.na.2022.112987

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Global boundedness of solutions to a parabolic-parabolic chemotaxis system with local sensing in higher dimensions2022

    • Author(s)
      Kentarou Fujie, Takasi Senba
    • Journal Title

      Nonlinearity

      Volume: 35 Issue: 7 Pages: 3777-3811

    • DOI

      10.1088/1361-6544/ac6659

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Boundedness of solutions to the critical fully parabolic quasilinear one‐dimensional Keller-Segel system2018

    • Author(s)
      Bieganowski Bartosz、Cieslak Tomasz、Fujie Kentarou、Senba Takasi
    • Journal Title

      Mathematische Nachrichten

      Volume: 292 Issue: 4 Pages: 724-732

    • DOI

      10.1002/mana.201800175

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity.2017

    • Author(s)
      Kentarou Fujie, Takasi Senba
    • Journal Title

      Nonlinearity

      Volume: 29 Issue: 8 Pages: 2417-2450

    • DOI

      10.1088/0951-7715/29/8/2417

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Presentation] Behavior of solutions to chemotaxis systems with nonlinear sensitivity functions2024

    • Author(s)
      Takasi Senba
    • Organizer
      The 7th International Workshop on Mathematical Analysis of Chemotaxis
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 対数関数を知覚関数に持つ走化性方程式系 の解の挙動について2024

    • Author(s)
      仙葉隆
    • Organizer
      2024年度日本数学会年会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Behavior of solutions to some chemotaxis systems with local sensing2022

    • Author(s)
      仙葉隆
    • Organizer
      九州関数方程式セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Keller-Segel 系に関連する方程式系の解の挙動について2022

    • Author(s)
      仙葉隆
    • Organizer
      非線型偏微分方程式と走化性
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 走化性方程式系に関連する方程式系の解の挙動の閾値について2022

    • Author(s)
      仙葉隆
    • Organizer
      第10回 弘前非線形方程式研究会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 特異定常解より大きい爆発形状を持つ不完全爆発解の存在について2019

    • Author(s)
      仙葉隆、内藤雄基
    • Organizer
      2019年度秋季総合分科会
    • Related Report
      2019 Research-status Report
  • [Presentation] 非線形知覚関数を持つ走化性方程式系の解の有界性について2018

    • Author(s)
      仙葉隆
    • Organizer
      2018夏の偏微分方程式セミナー
    • Related Report
      2018 Research-status Report
  • [Funded Workshop] 8th Euro-Japanese workshop on blow-up2018

    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi