• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of innovative speeding-up of main-variables elimination of multivariate polynomial systems

Research Project

Project/Area Number 18K03389
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12030:Basic mathematics-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

SASAKI Tateaki  筑波大学, 数理物質系(名誉教授), 名誉教授 (80087436)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords多変数多項式系の変数消去 / 終結式 / 終結式の余計因子 / グレブナー基底 / グレブナー基底法 / 多項式イデアル / イデアルの最低元 / Buchbergerの算法 / 多変数多項式の変数消去 / 多項式剰余列法 / イデアルの生成元係数 / 終結式の余計因子除去 / 多変数終結式法 / 多変数主項消去法 / イデアル最小元の早期計算 / 多項式系の三角化と四角化 / 終結式中の余計因子と除去 / 剰余列法(終結式法) / グレブナー基底の最小元 / イデアル要素の基底係数 / 終結式法とグレブナー基底法の融合 / 多項式系の変数消去 / 剰余列法(終結式法) / 辞書式順序のグレブナー基底 / 消去イデアルの最低元 / 多項式イデアルの最低元 / グレブナー基底計算の高速化 / 多項式剰余列法(終結式法) / 消去イデアルの最小元 / 健康な多変数多項式系 / 剰余列の三角化と四角化 / 多変数多項式系の主変数消去 / 多変数多項式剰余列の最終元 / 多変数多項式系のグレブナー基底 / 消去イデアルの最小元の応用 / 剰余列と余因子列 / 臨界的消去法
Outline of Final Research Achievements

As for variable elimination of polynomial systems, we have now two methods. The resultant method can eliminate variables quite fast but the result contains very big extraneous factors, while the Groebner basis (G-base) method gives a complete result but it is very slow.
As for two polynomial system {G,H}, we proved that if we compute the resultant R = res(G,H) and A and B s.t. AG + BH = R, we can remove the extraneous factor of R fully by using GCD (Greatest Common Divisor) for A and B. For (m+1)-polynomial system, with m>2, we obtain m resultants by eliminating variables by changing their order, then GCD of the resultants is a small multiple of the lowest order element of the ideal. We have also found several methods of computing small multiples.
Thirdly, we developed a method of computing small multiples of G-basis elements from the elements of polynomial remainder sequence efficiently.

Academic Significance and Societal Importance of the Research Achievements

The bone of Buchberger's algorithm for Groebner basis computation has been almost unchanged more than 60 years, and we had no method for extraneous factor removal for resultants.
This research gave solutions for these many-years unsolved problems, although they must be revised still more.

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (22 results)

All 2024 2023 2022 2021 2020 2019 2018

All Journal Article (11 results) (of which Open Access: 7 results,  Peer Reviewed: 5 results) Presentation (11 results) (of which Int'l Joint Research: 5 results,  Invited: 1 results)

  • [Journal Article] プレート沈込み型地震に対する半特異面数学モデルの構築2024

    • Author(s)
      佐々木建昭、 讃岐 勝、 稲葉大樹
    • Journal Title

      数理解析研究所講究録

      Volume: to appear

    • Related Report
      2023 Annual Research Report
    • Open Access
  • [Journal Article] TES (Term Elimination Sequence) について2023

    • Author(s)
      佐々木建昭
    • Journal Title

      数理解析研究所講究録

      Volume: 印刷中

    • Related Report
      2022 Research-status Report
    • Open Access
  • [Journal Article] Proposal of multivariate polynomial arithmetic in a secified width of high- or low-exponents2022

    • Author(s)
      Tateaki Sasaki, Masaru Sanuki, and Daiju Inaba
    • Journal Title

      SYNASC21. IEEE Conferece Publishing Services

      Volume: - Pages: 25-32

    • DOI

      10.1109/synasc54541.2021.00016

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Proposal of Multivariate Polynomial Arithmetic in a Specified Width of High- or Low-Exponents2022

    • Author(s)
      Tateaki Sasaki, Masaru Sanuki, Daiju Inaba
    • Journal Title

      SYNASC 2021

      Volume: in printing

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] An Attempt to Enhance Buchberger's Algorithm by Using Remainder Sequences and GCDs (II)2021

    • Author(s)
      Tateaki Sasaki, Masaru Sanuki, Daiju Inaba, Fujio Kako
    • Journal Title

      RIMS Kokyuroku (数理解析研究所講究録)

      Volume: 2185 Pages: 71-80

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] An attempt to Enhance Buchberger's Algorithm by using remainder sequences and GCDs (II)2021

    • Author(s)
      Tateaki Sasaki, Masaru Sanuki, Daiju Inaba, Fujio Kako
    • Journal Title

      RIMS Kokyuroku

      Volume: -

    • Related Report
      2020 Research-status Report
  • [Journal Article] An Attempt to Enhance Buchberger's Algorithm by Using Remainder Sequences and GCD Operation2019

    • Author(s)
      Sasaki Tateaki
    • Journal Title

      SYNASC 2019

      Volume: - Pages: 27-34

    • DOI

      10.1109/synasc49474.2019.00014

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] 拡張Hensel構成の効率化 -- 疎な多変数多項式の因数分解を念頭に2019

    • Author(s)
      佐々木 建昭,讃岐 勝,稲葉 大樹
    • Journal Title

      数理解析研究所講究録

      Volume: 2138 Pages: 87-95

    • NAID

      120006888176

    • Related Report
      2019 Research-status Report
  • [Journal Article] Computing the Lowest-order Element of a Multivariate Elimination Ideal by Using Remainder Sequences2019

    • Author(s)
      Tateaki Sasaki
    • Journal Title

      SYNASC 2018 (Symbolic and Numeric Algorithms for Scientific Computing)

      Volume: なし

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] 疎な多変数多項式系の高速な変数消去法の探求2019

    • Author(s)
      佐々木 建昭、 稲葉 大樹
    • Journal Title

      数理解析研究所講究録

      Volume: 2104

    • Related Report
      2018 Research-status Report
  • [Journal Article] 多変数多項式系の消去イデアルの最小元を剰余列算法で計算する2018

    • Author(s)
      佐々木 建昭
    • Journal Title

      第47回数値解析シンポジウム予稿集(電子版)

      Volume: なし

    • Related Report
      2018 Research-status Report
  • [Presentation] Term Elimination Sequence and Removal of External actors in Two-polynomial Systems2023

    • Author(s)
      Tateaki Sasaki
    • Organizer
      Application of Computer Algebra - ACA2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] TES (Term Elimination Sequence) について2022

    • Author(s)
      佐々木建昭
    • Organizer
      RIMS共同研究 Computer Algebra - Theory and its Applications
    • Related Report
      2022 Research-status Report
  • [Presentation] A Bridge between Euclid and Buchberger (An Attempt to enhance Groebner basis algorithm by PRSs and GCDs)2021

    • Author(s)
      Tateaki Sasaki
    • Organizer
      SCSS2021 -- Symbpolic Computation in Software Science
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Proposal of Multivariate Polynomial Arithmetic in a Specified Width of High- or Low-Exponents2021

    • Author(s)
      Tateaki Sasaki, Masaru Sanuki, Daiju Inaba
    • Organizer
      23rd Intern'l Symposium on Symbolic and Numeric Algorithms for Scientific Computing
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] An attempt to enhance Buchberger's Algorithm by using remainder sequences and GCDs (II)2020

    • Author(s)
      Tateaki Sasaki, Masaru Sanuki, Daiju Inaba, Fujio Kako
    • Organizer
      RIMS 共同研究,Computer Algebra - Theory and its Applications
    • Related Report
      2020 Research-status Report
  • [Presentation] 多変数多項式系の極小消去系と革新的算法2019

    • Author(s)
      佐々木 建昭
    • Organizer
      応用数理学会・数値解析シンポジウム
    • Related Report
      2019 Research-status Report
  • [Presentation] An Attempt to Enhance Buchberger's Algorithm by Using Remainder Sequence and GCD Operation2019

    • Author(s)
      Tateaki Sasaki
    • Organizer
      21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 剰余列とGCDによる辞書式グレブナー基底計算に対する種々の技法2019

    • Author(s)
      佐々木 建昭
    • Organizer
      数理解析研究所研究集会:Computer Algebra -- Theory and its Applications
    • Related Report
      2019 Research-status Report
  • [Presentation] Computing the Lowest-order Element of a Multivariate Elimination Ideal by Using Remainder Sequences2018

    • Author(s)
      Tateaki Sasaki, Daiju Inaba
    • Organizer
      20th Intern'l Symposium on Symbolic and Numeric Algorithms for Scientific Computing
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 多変数多項式系の消去イデアルの最小元を剰余列法で計算する2018

    • Author(s)
      佐々木 建昭
    • Organizer
      第47回数値解析シンポジウム
    • Related Report
      2018 Research-status Report
  • [Presentation] 拡張Hensel構成の効率化 -- 疎な多変数多項式の因数分解を念頭に --2018

    • Author(s)
      佐々木 建昭、讃岐 勝、稲葉 大樹
    • Organizer
      数理研共同研究 「Computer Algebra -- Theory and its Applications」
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi