Numerical verification of solutions for parabolic problems based on the finite element method
Project/Area Number |
18K03440
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 12040:Applied mathematics and statistics-related
|
Research Institution | Nakamura Gakuen University Junior College |
Principal Investigator |
Hashimoto Kouji 中村学園大学短期大学部, 幼児保育学科, 准教授 (40455093)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 数値的検証法 / 発展方程式 / 有限要素法 / 構成的誤差評価 |
Outline of Final Research Achievements |
Using the full-descrete finite element scheme which is satisfied the numerical stability, we presented the numerical verification method for solutions of nonlinear parabolic problems.
|
Academic Significance and Societal Importance of the Research Achievements |
これまでに提案されていなかった一般的な数値計算法である有限要素法を基盤とする発展方程式の解軌道に対する数値的検証法の構築により、発展方程式に対する新たな数値解法を提案することができた。
|
Report
(4 results)
Research Products
(7 results)