• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Shape and Layout Imagery Creation using BMI Based on Mechanical Kansei

Research Project

Project/Area Number 18K03899
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 18030:Design engineering-related
Research InstitutionShibaura Institute of Technology

Principal Investigator

Hasegawa Hiroshi  芝浦工業大学, システム理工学部, 教授 (40384028)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords設計工学 / 力学的感性 / 人間中心設計 / Human-centered computing / Brain machine interface / 位相最適化 / 脳波計測 / トポロジー最適化 / 脳機能計測 / ニューラルネットワーク
Outline of Final Research Achievements

This research deals with a challenging academic question from designers: Can we automatically extract the shape and layout in our brains based on our mechanical kansei?
In this study, we developed a method of collecting brain function information custom-made for each designer, developed topology optimization based on the brain function information, and performed validation to quality assured the derived shape and layout. The development of the shape and layout imagery creation method has made it possible to create shapes that take into consideration the designer's individuality and artistic sensibility based on mechanical kansei. The validity of the imagery creation was confirmed by SD analysis. In conclusion, the method that considered mechanical kansei and experiential knowledge under physical constraints was realized as one of the super-upstream delight design methods to create value by adding delight to quality and function.

Academic Significance and Societal Importance of the Research Achievements

「力学的感性に基づいた頭の中の形状を自動的に取り出せないか」という設計者の挑戦的な学術的問いを取り扱ったものである.設計者の前向きな期待を伴った形状創生支援が実現できれば,物理的制約下での力学的感性と経験的知識を考慮した最適形状の創生が可能となる.これは,設計者が長年抱いていた最適形状に対する違和感,設計意図の説明の困難さを解消するための一助となる.この開発した新たな形状創生手法は,品質・機能にデライトを与えた価値を創生する,超上流デライト設計手法となることから,ものづくり産業を輝かせるためのツールとなる.

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (15 results)

All 2022 2021 2020 2019 2018

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (13 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] Imagery Creation based on Autonomic System for Finite Element by using Fully Convolutional Network2020

    • Author(s)
      Gentaro Miyaki, Komei Tanaka, Hiroshi Hasegawa
    • Journal Title

      Procedia Manufacturing, Elsevier

      Volume: 42 Pages: 383-386

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Shape and Layout Imagery Creation using BMI based on Mechanical Kansei2018

    • Author(s)
      Nanami Hoshi, Ryu Kitamura, Hiroshi Hasegawa
    • Journal Title

      Proceedings of the 2nd International Symposium on Computer Science and Intelligent Control, ISCSIC 2018

      Volume: 62 Pages: 1-6

    • DOI

      10.1145/3284557.3284736

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Shape and Layout Imagery Creation Based on BMI: Validation for Custom-made2022

    • Author(s)
      Tsubasa Kobayashi, Hiroshi Hasegawa
    • Organizer
      The Asian Congress of Structural and Multidisciplinary Optimization 2022(ACSMO 2022)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] BMIに基づく形状創生:前向きな期待を用いた形状評価2022

    • Author(s)
      豊嶋葵輝,長谷川浩志
    • Organizer
      日本機械学会 情報・知能・精密機器部門(IIP部門)講演会
    • Related Report
      2021 Research-status Report
  • [Presentation] BMIに基づく形状創生:オーダーメイド化に向けた妥当性確認2021

    • Author(s)
      長谷川浩志,小林翼,豊島葵輝,横井宏昭
    • Organizer
      日本機械学会 第34回計算力学講演会(CMD2021)
    • Related Report
      2021 Research-status Report
  • [Presentation] 環境の変化を想定したACOを用いたトポロジー最適化2021

    • Author(s)
      松田勝行,星七海,長谷川浩志
    • Organizer
      日本機械学会関東支部第27期総会・講演会
    • Related Report
      2020 Research-status Report
  • [Presentation] TDNNを用いたBMIの開発による形状創生の改善2020

    • Author(s)
      横井宏昭, 長谷川浩志
    • Organizer
      第25回日本計算工学会講演会
    • Related Report
      2020 Research-status Report
  • [Presentation] FCNによる単一画像より生成した有限要素モデルの妥当性確認2020

    • Author(s)
      宮木厳太朗,田中孔明,長谷川浩志
    • Organizer
      第25回日本計算工学会講演会
    • Related Report
      2020 Research-status Report
  • [Presentation] BCIにおけるTDNNを用いた汎化性能に対する数値実験2020

    • Author(s)
      大澤 匠, 長谷川浩志
    • Organizer
      日本機械学会関東支部第26期総会・講演会
    • Related Report
      2019 Research-status Report
  • [Presentation] Imagery Creation based on Autonomic System for Finite Element by using Fully Convolutional Network2019

    • Author(s)
      Gentaro Miyaki, Komei Tanaka, Hiroshi Hasegawa
    • Organizer
      International Conference on Industry 4.0 and Smart Manufacturing (ISM 2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 単一画像による有限要素モデルの自己生成:FCNへのプーリング層の導入2019

    • Author(s)
      宮木厳太朗,田中孔明,長谷川浩志
    • Organizer
      第24回日本計算工学会講演会
    • Related Report
      2019 Research-status Report
  • [Presentation] ACOによるトポロジー最適化:フェロモンコントロールの影響2019

    • Author(s)
      星七海,横井宏昭,長谷川浩志
    • Organizer
      日本機械学会2019年度年次大会
    • Related Report
      2019 Research-status Report
  • [Presentation] 形状創生を目的としたBMIの開発2019

    • Author(s)
      横井宏昭,長谷川浩志
    • Organizer
      日本機械学会2019年度年次大会
    • Related Report
      2019 Research-status Report
  • [Presentation] Ant Colony Topology Optimization: The Pheromone Control for the Mechanical Kansei2018

    • Author(s)
      Nanami Hoshi, Hiroshi Hasegawa
    • Organizer
      7th International Conference on Modeling and Applied Simulation, MAS 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 脳波情報による力学的感性を用いた形状創生システムの提案2018

    • Author(s)
      北村隆,星七海,長谷川浩志
    • Organizer
      日本機械学会第13回最適化シンポジウム2018
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi