Project/Area Number |
18K04038
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 20010:Mechanics and mechatronics-related
|
Research Institution | Japan Aerospace EXploration Agency |
Principal Investigator |
Otsuki Masatsugu 国立研究開発法人宇宙航空研究開発機構, 宇宙科学研究所, 准教授 (50348827)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
|
Keywords | テラメカニクス / 反力推定 / 柔軟地盤 / 探査ローバ / 粉粒体 / グローサ / 形状最適化 / 宇宙ロボット / 車輪移動 / 移動機構 / ローバ / 最適化 / 形状設計 |
Outline of Final Research Achievements |
In this study, a new reaction force estimation formula of the grouser-wheel geometry was obtained, and regarding the sinkage-traction force result of the wheel with the grousers with the calculated sub-optimal shape, the experimental results are compared with the numerical results. And, I performed the design and manufacture of the wheel with the grousers, and the problem in the actual manufacturing due to complicated shape of the grouser was faced, and the effective solution was obtained. As the result of examining in order to obtain desired performance (Traction force, bulldozing force), we obtained a regular polyhedron shape geometry which can ensure the followings: Productivity is high, depth of sinkage is low, and it has more than a certain amount of bulldozing force.
|
Academic Significance and Societal Importance of the Research Achievements |
成果は惑星探査ローバや着陸探査機に用いることのできる技術であり,実製造上の課題も含めて確認することができた.それに限らず,不整地で作業する建設機械や産業用機械,火山地域や極地等での観測ロボットへも応用できると考えられ,今後の発展が期待できる.より少ないパラメタである程度の精度で反力推定ができる手段を得たことになったため,ADAMS等ダイナミクスシミュレータとの親和性が高まり,いままで,計算の複雑さ故にできなかった,柔軟地盤とのインタラクションを持つ機械のダイナミクス解析の計算負荷を下げることができた.新しい手法の適用可能な範囲を見定める課題が残っており,学術的にも新しいテーマを提供できた.
|