Project/Area Number |
18K04911
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 28050:Nano/micro-systems-related
|
Research Institution | National Institute of Information and Communications Technology |
Principal Investigator |
AOKI Kanna 国立研究開発法人情報通信研究機構, ネットワークシステム研究所ネットワーク基盤研究室, 主任研究員 (90332254)
|
Project Period (FY) |
2018-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 磁場アセンブリ / 微細加工 / ナノマイクロ科学 / アンテナ / 遮熱 / 熱赤外線 / 3次元 / 微細構造作製技術 / 磁場応用 / 反磁性体 / 常磁性体 / 磁性流体 / 自己組織 / 断熱 |
Outline of Final Research Achievements |
The purpose of this research is to realize an economical thermal shielding structure by forming an antenna structure on a substrate that selectively reflects thermal infrared rays using the magnetic field assembly method, which is a new three-dimensional microstructure fabrication technology with a high degree of freedom in structural design in the direction normal to the substrate surface and a high fabrication speed. Two-dimensional components with complex patterns formed using conventional microfabrication techniques were vertically aligned on a substrate through magnetic field assembly and fusion-bonding to the substrate by UV irradiation. It can be said that 3D patterns, which are difficult to fabricate using conventional methods, were fabricated in a single step. However, we were unable to overcome the problem of low position controllability, and were unable to obtain optical characteristics.
|
Academic Significance and Societal Importance of the Research Achievements |
本課題は2次元部品を基板上の任意の位置に自己配列させる技術を確立する点が最も難所であったため、2次元部品の内部に設ける構造の複雑さは深く追求せず、ミクロンスケールの中空構造を設けるに留まった。それでも同様の3次元構造を既存の微細加工技術で作製することは困難である。ミクロンスケールの3次元構造を1ステップで簡便に作製可能であることを示すことが出来た点は将来の微細加工法の自由度拡大に貢献したと考える。また、異種材料を従来の格子整合性や無機/ポリマーの親和性ではなく、磁気的性質を利用して集積する可能性も示した。
|