Project/Area Number |
18K05290
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 36020:Energy-related chemistry
|
Research Institution | Seikei University (2019-2023) Tokyo University of Agriculture and Technology (2018) |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | リチウム空気電池 / 空気極触媒 / 酸化マンガンナノシート / ナノカーボン / 複合触媒 / 高比表面積 / 層間カチオンの効果 / ナノカーボン複合体 / 一段階合成法 / 界面・層間カチオン / リチウム空気極 / フリーズドライ法 |
Outline of Final Research Achievements |
In this study, we investigated the synthesis methods for new MnO2 nanosheet (MnNS)-based air electrode catalysts composited with nanocarbons, mainly Ketjen Black (KB), for the realization of non-aqueous Li-air battery (LAB). Also, the LAB test cells using the obtained catalysts were assembled and the discharge/charge performances were evaluated. As a result, mixing KB in MnNS colloid solution and MnNS synthesis in KB dispersed solution enabled to obtain more homogeneous nanocomposite catalysts and simplified synthesis process, which leaded to improve the catalytic activity. In addition, it was elucidated that Li+ existing between the nanosheets smoothly promoted to generate amorphous Li2O2 by surface reaction and contributed to reduce the charge overvoltage and improve the cycle life.
|
Academic Significance and Societal Importance of the Research Achievements |
本触媒は、酸化物由来の固体触媒でありながら200 m2 g-1以上の比表面積を有し、全て単層シートであれば理論的には全ての活性サイトが露出し、高効率に酸素還元反応(ORR)や酸素発生反応(OER)を促進するものと考えられる。また、ナノシート層間には電荷補償のため、様々なカチオンやH2O等の溶媒分子を介在でき、反応場に必要なイオンや溶媒分子を保持して触媒反応を促進し、学術的に興味深い。本研究のLAB環境下では高分散化とLi+介在で表面反応がより促進され、充電時に分解し易い非結晶Li2O2になり易いことも見出している。本触媒は亜鉛空気電池や水電解の空気極にも応用でき、社会的にも極めて有用である。
|