Project/Area Number |
18K05308
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 36020:Energy-related chemistry
|
Research Institution | National Institutes for Quantum and Radiological Science and Technology |
Principal Investigator |
TAMURA Koji 国立研究開発法人量子科学技術研究開発機構, 高崎量子応用研究所 東海量子ビーム応用研究センター, 専門業務員(任常) (10354820)
|
Co-Investigator(Kenkyū-buntansha) |
安達 基泰 国立研究開発法人量子科学技術研究開発機構, 量子生命科学領域, 上席研究員(定常) (60293958)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 増感太陽電池 / 光捕集タンパク質 / C型フィコシアニン / 自己組織化 / タンパク質 / 量子コヒーレント伝導 |
Outline of Final Research Achievements |
For efficient solar cell, solar cell sensitized with light-harvesting protein complex was developed. For natural protein sensitizer, methods such as cultural method, high purification method were developed. For artificial protein, the possibility that PC645 protein was partially synthesized was shown. Solar cell was made using the light-harvesting protein complex (C-Phycocyanin), and, optimum conditions for efficient cell such as composition, particle size distribution, thickness of the semi-conductor layer were investigated. Photovoltaic properties such as photo response, I-V curve, excitation wavelength dependence, conversion efficiency, necessary for the estimation of solar cell were measured. Development of solar cell sensitized with light-harvesting protein, with development of protein, optimum cell conditions, estimation of photovoltaic properties, were achieved.
|
Academic Significance and Societal Importance of the Research Achievements |
高効率太陽電池は、脱炭素社会実現に有効な技術である。特に増感太陽電池は、低コストで量産が見込めるが、シリコン系電池に比べ低効率である点が実用化の障害である。しかし、高効率増感物質を見出せば、大幅な効率向上の余地が期待される。光合成初期過程に関与するフィコビリンタンパク質で量子コヒーレント伝導が報告された。この光捕集タンパク質は、従来増感物質としては着目されなかったが、増感物質として開発利用し高効率太陽電池が実現すれば、脱炭素社会に寄与する可能性がある。また、タンパク質内の励起伝導やエネルギー取り出し過程など、従来の増感電池とは異なり、その開発や機構解明は学術的にも意義深い。
|