• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of machine learning-based brain tumor image diagnosis support technology

Research Project

Project/Area Number 18K07629
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionInternational University of Health and Welfare (2021-2022)
The University of Tokyo (2018-2020)

Principal Investigator

Kunimatsu Akira  国際医療福祉大学, 国際医療福祉大学三田病院, 教授 (20323553)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
KeywordsMRI / 脳腫瘍 / 画像診断支援 / 機械学習 / 深層学習
Outline of Final Research Achievements

Although machine learning technology has shown great promise in assisting the diagnosis of medical images, its evaluation has yet to be established. The main objective of this study was to construct a diagnostic support model to discriminate between multiple types of brain tumor images using deep learning and to evaluate its performance for brain tumors that are of high clinical importance and occur relatively frequently. Input images were created by extracting T1-weighted, T2-weighted, and contrast-enhanced T1-weighted images from brain MRI images of glioblastoma, primary central nervous system lymphoma, and meningioma, and trained on a publicly available deep learning architecture using the fine-tuning method. When the trained model was allowed to identify the images for validation, correct answers were obtained with more than 90% accuracy.

Academic Significance and Societal Importance of the Research Achievements

脳腫瘍の画像識別を行う特化型の人工知能アプリケーションの臨床導入はまだなされておらず、本研究の成果は同種の技術の臨床展開が進歩する上での土台となることが期待される。異なる種類の脳腫瘍においても人間の目にとって類似した画像パターンを示すことがしばしばあり、本研究の成果を用いることで従来に比べ医師の診断を保管する客観的指標として統合することでより質の高い画像診断が可能となることが期待される。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (16 results)

All 2022 2021 2020 2019 2018 Other

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 2 results) Presentation (10 results) (of which Int'l Joint Research: 2 results,  Invited: 7 results) Remarks (2 results)

  • [Journal Article] Texture Analysis in Brain Tumor MR Imaging2022

    • Author(s)
      Kunimatsu Akira、Yasaka Koichiro、Akai Hiroyuki、Sugawara Haruto、Kunimatsu Natsuko、Abe Osamu
    • Journal Title

      Magnetic Resonance in Medical Sciences

      Volume: 21 Issue: 1 Pages: 95-109

    • DOI

      10.2463/mrms.rev.2020-0159

    • NAID

      130008166196

    • ISSN
      1347-3182, 1880-2206
    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Whole-lesion histogram analysis of apparent diffusion coefficient for the assessment of non-mass enhancement lesions on breast MRI2022

    • Author(s)
      Kunimatsu Natsuko、Kunimatsu Akira、Uchida Yoshihiro、Mori Ichiro、Kiryu Shigeru
    • Journal Title

      Journal of Clinical Imaging Science

      Volume: 12 Pages: 12-12

    • DOI

      10.25259/jcis_201_2021

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] MRI findings in posttraumatic stress disorder2020

    • Author(s)
      Kunimatsu A, Yasaka K, Akai H, Kunimatsu N, Abe O
    • Journal Title

      J Magn Reson Imaging

      Volume: 52 Issue: 2 Pages: 380-396

    • DOI

      10.1002/jmri.26929

    • Related Report
      2020 Research-status Report 2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Differentiation between solitary fibrous tumors and schwannomas of the head and neck: An apparent diffusion coefficient histogram analysis2019

    • Author(s)
      Kunimatsu N, Kunimatsu A, Miura K, Mori I, Nawano S.
    • Journal Title

      Dentomaxillofacial Radiology

      Volume: 48 Issue: 3 Pages: 20180298-20180298

    • DOI

      10.1259/dmfr.20180298

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] 脳腫瘍を対象としたMRI radiomics解析:最近の話題から2022

    • Author(s)
      國松 聡
    • Organizer
      第45回日本脳神経CI学会
    • Related Report
      2022 Annual Research Report 2021 Research-status Report
    • Invited
  • [Presentation] Clinical AI and radiomics research in Japan2021

    • Author(s)
      Kunimatsu Akira
    • Organizer
      Society of Imaging Informatics in Medicine
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] AI and radiomics research in head and neck tumors2021

    • Author(s)
      Kunimatsu Akira
    • Organizer
      Annual Scientific Meeting of Asian Society of Magnetic Resonance in Medicine
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 神経膠腫を対象としたradiomicsの現状と臨床応用への課題2021

    • Author(s)
      國松 聡
    • Organizer
      第50回日本神経放射線学会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Radiomicsが脳腫瘍画像診断に与えるインパクトと臨床応用への課題2021

    • Author(s)
      國松 聡
    • Organizer
      第40回日本画像医学会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] 神経膠腫を対象としたradiomics研究の現状と課題2020

    • Author(s)
      國松 聡
    • Organizer
      第15回脳腫瘍の基礎シンポジウム
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Understanding how N4 field bias correction affects extraction of radiomics features from MR images2019

    • Author(s)
      Kunimatsu A, Yasaka K, Akai H, Kunimatsu N, Kamiya K, Watadani T, Mori H, Abe O
    • Organizer
      第47回日本磁気共鳴医学会大会
    • Related Report
      2019 Research-status Report
  • [Presentation] AI時代の術中画像 手術に役立つ画像、解析:放射線科医の立場から2019

    • Author(s)
      國松 聡
    • Organizer
      第19回日本術中画像情報学会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] MR image-based differentiation of glioblastoma and primary central nervous system lymphoma with deep convolutional neural networks2018

    • Author(s)
      Kunimatsu A, Yasaka K, Akai H, Kunimatsu N, Kamiya K, Watadani T, Mori H, Abe O.
    • Organizer
      第46回日本磁気共鳴医学会大会
    • Related Report
      2018 Research-status Report
  • [Presentation] Understanding how image data compression affects deep convolutional neural network studies using MR images2018

    • Author(s)
      Kunimatsu A, Yasaka K, Akai H, Kunimatsu N, Kamiya K, Watadani T, Mori H, Abe O.
    • Organizer
      第46回日本磁気共鳴医学会大会
    • Related Report
      2018 Research-status Report
  • [Remarks] 東京大学医科学研究所附属病院放射線科 研究成果

    • URL

      https://www.ims.u-tokyo.ac.jp/radiology/publication.html

    • Related Report
      2020 Research-status Report
  • [Remarks] 東京大学医科学研究所附属病院放射線科 研究成果

    • URL

      https://www.ims.u-tokyo.ac.jp/radiology/publication.html

    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi