• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Visualization of Lenticulostriate Arteries on CT Angiography using Ultra-High Resolution CT Compared with Conventional Detector CT

Research Project

Project/Area Number 18K07694
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionFujita Health University

Principal Investigator

Murayama Kazuhiro  藤田医科大学, 医学部, 准教授 (40622931)

Co-Investigator(Kenkyū-buntansha) 外山 宏  藤田医科大学, 医学部, 教授 (90247643)
中原 一郎  藤田医科大学, 医学部, 教授 (80252451)
小田 淳平  藤田医科大学, 医学部, 講師 (30630040)
Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Keywords高精細CT / ディープラーニング / 被ばく低減 / CT血管造影 / 頭蓋内細動脈 / CT angiography / 高分解能CTA / 脳血管細動脈
Outline of Final Research Achievements

The newly developed ultra-high resolution CT (UHR-CT), can visualizing small blood vessels more clearly compared with than conventional detector CT (C-CT). We determined if UHR-CTA produced superior images of the lenticulostriate arteries (LSA), compared to C-CTA. UHR-CT provides significantly higher-quality images, compared to the C-CT because of its improved spatial resolution and partial volume effect. UHR-CTA is a simple, noninvasive and easily accessible method to investigate the shape, number and length of lenticulostriate arteries.
In addition, we directly compare the capability for image quality improvements on brain contrast-enhanced CT angiography (CE-CTA) for UHR-CT in intracranial aneurysms patients among deep learning reconstruction (DLR) and hybrid-type iterative reconstruction (IR) and model-based IRs. DLR has a potential for image quality improvements than hybrid-type and model-based IRs on brain CE-CTA for UHR-CT.

Academic Significance and Societal Importance of the Research Achievements

高精細CT装置は、従来型検出器CT装置と比較してより細かい構造の描出が可能である。従来型CTと比べ高精細CTで有意に細動脈の描出能が改善され,脳外科領域で臨床的に重要な細動脈及び静脈系における,高精細CTを用いた高分解能CT血管造影の有用性が示された。
高精細CTでは被ばく線量の増加が懸念されるため、被ばく低減技術の併用が重要となる。ディープラーニングを用いたノイズ成分とシグナル成分を識別し分解能を維持したままノイズを選択的に除去する新しい被ばく低減技術では,従来法と比べて,高精細CTを用いた頭部CTAにおける描出能の改善に寄与する可能性があることが示された。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (12 results)

All 2021 2020 2019 2018

All Journal Article (6 results) (of which Peer Reviewed: 6 results,  Open Access: 1 results) Presentation (6 results) (of which Int'l Joint Research: 2 results,  Invited: 2 results)

  • [Journal Article] Machine learning for lung CT texture analysis: Improvement of inter-observer agreement for radiological finding classification in patients with pulmonary diseases.2021

    • Author(s)
      Ohno Y, Aoyagi K, Takenaka D, Yoshikawa T, Ikezaki A, Fujisawa Y, Murayama K, Hattori H, Toyama H.
    • Journal Title

      Eur J Radiol.

      Volume: 134 Pages: 109410-109410

    • DOI

      10.1016/j.ejrad.2020.109410

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Compressed sensing and deep learning reconstruction for women's pelvic MRI denoising: Utility for improving image quality and examination time in routine clinical practice2020

    • Author(s)
      Takahiro Ueda 1 , Yoshiharu Ohno 2 , Kaori Yamamoto 3 , Akiyoshi Iwase 4 , Takashi Fukuba 5 , Satomu Hanamatsu 6 , Yuki Obama 7 , Hirotaka Ikeda 8 , Masato Ikedo 9 , Masao Yui 10 , Kazuhiro Murayama 11 , Hiroshi Toyama 12
    • Journal Title

      Eur J Radiol

      Volume: Epub Pages: 109430-109430

    • DOI

      10.1016/j.ejrad.2020.109430

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Compressed sensing and parallel imaging accelerated T2 FSE sequence for head and neck MR imaging: Comparison of its utility in routine clinical practice2020

    • Author(s)
      Hirotaka Ikeda 1 , Yoshiharu Ohno 2 , Kazuhiro Murayama 3 , Kaori Yamamoto 4 , Akiyoshi Iwase 5 , Takashi Fukuba 6 , Hiroshi Toyama 7
    • Journal Title

      Eur J Radiol

      Volume: Epub Pages: 109501-109501

    • DOI

      10.1016/j.ejrad.2020.109501

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Deep learning-based and hybrid-type iterative reconstructions for CT: comparison of capability for quantitative and qualitative image quality improvements and small vessel evaluation at dynamic CE-abdominal CT with ultra-high and standard resolutions2020

    • Author(s)
      Ryo Matsukiyo 1 , Yoshiharu Ohno 2 3 , Takahiro Matsuyama 1 , Hiroyuki Nagata 1 , Hirona Kimata 4 , Yuya Ito 4 , Yukihiro Ogawa 4 , Kazuhiro Murayama 5 , Ryoichi Kato 1 , Hiroshi Toyama 1
    • Journal Title

      Jpn J Radiol

      Volume: Epub Issue: 2 Pages: 186-197

    • DOI

      10.1007/s11604-020-01045-w

    • NAID

      210000178632

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Visualization of Lenticulostriate Arteries on CT Angiography Using Ultra-High-Resolution CT Compared with Conventional-Detector CT.2020

    • Author(s)
      K Murayama, S Suzuki, H Nagata, J Oda, I Nakahara, K Katada, K Fujii, H Toyama
    • Journal Title

      American Journal of Neuroradiology

      Volume: 41 Issue: 2 Pages: 219-223

    • DOI

      10.3174/ajnr.a6377

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Initial clinical experience of a prototype ultra-high-resolution CT for assessment of small intracranial arteries2019

    • Author(s)
      Nagata Hiroyuki、Murayama Kazuhiro、Suzuki Shigetaka、Watanabe Ayumi、Hayakawa Motoharu、Saito Yasuo、Katada Kazuhiro、Toyama Hiroshi
    • Journal Title

      Japanese Journal of Radiology

      Volume: 37 Issue: 4 Pages: 283-291

    • DOI

      10.1007/s11604-019-00816-4

    • NAID

      50013208188

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Deep Learning Reconstructionを用いた頭部CTAの画質改善に関する検討2021

    • Author(s)
      村山和宏, 大野良治, 野村昌彦,木全洋奈,秋野成臣,藤井健二,花松智武,池田裕隆,外山宏
    • Organizer
      第50回日本神経放射線学会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Deep Learning Reconstruction vs. Hybrid-Type Iterative Reconstruction vs. Model-Based Iterative Reconstruction: Capability for Image Quality Improvement on Brain Contrast-Enhanced CT Angiography2020

    • Author(s)
      Murayama K, Ohno Y, Nomura M, Kimata H, Akino N, Fujii K, Hanamatsu S, Ikeda H, Kataoka Y, Katagata A, Doi Y, Matsumoto R, Toyama H
    • Organizer
      RSNA 2020
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 高精細CTを用いた脳卒中の画像診断2020

    • Author(s)
      村山和宏
    • Organizer
      第45回日本脳卒中学会学術集会
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] DLR-MRIで変わる脳神経領域の画像診断2020

    • Author(s)
      村山和宏
    • Organizer
      第48回日本磁気共鳴医学会大会
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Feasibility of 3-Dimensional CT Venography using Ultra-High Resolution CT for Visualizing Cerebral Veins and Venous Sinuses: Compared with Conventional Detector CT2019

    • Author(s)
      Kazuhiro Murayama, Hiroyuki Nagata, Akio Katagata, Kazuhiro Katada, Kenji Fujii, Hiroshi Toyama
    • Organizer
      第25回欧州放射線医学会
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Diagnostic Performance of CT Angiography for Middle Cerebral Artery Perforator using Ultra-High Resolution CT2018

    • Author(s)
      Kazuhiro Murayama, Hiroyuki Nagata, Junpei Oda, Ichiro Nakahara, Kazuhiro Katada, Kenji Fujii, Hiroshi Toyama
    • Organizer
      第77回日本医学放射線学会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-12-28  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi