• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Establishment of artificial intelligence (deep learning) system for histological diagnosis and prediction of malignancy in lung cancer

Research Project

Project/Area Number 18K07713
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionOsaka University

Principal Investigator

Yanagawa Masahiro  大阪大学, 医学系研究科, 講師 (00546872)

Co-Investigator(Kenkyū-buntansha) 新岡 宏彦  大阪大学, データビリティフロンティア機構, 特任准教授(常勤) (70552074)
富山 憲幸  大阪大学, 医学系研究科, 教授 (50294070)
本多 修  大阪大学, 医学系研究科, 講師 (80324755)
三宅 淳  大阪大学, 国際医工情報センター, 特任教授 (70344174)
Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords人工知能 / CT / 肺癌 / 病理組織診断 / 浸潤成分 / ニューラルネットワーク / 予後
Outline of Final Research Achievements

In this study, an artificial intelligence system was developed in collaboration with the faculty of engineering to predict histopathological diagnosis and malignant potential based on pathological invasiveness from three-dimensional CT data of lung cancer. By comparing the diagnostic performance between the developed artificial intelligence and with thoracic radiologists, the effect of the artificial intelligence on the diagnostic performance for radiologists was also statistically analyzed. In addition, the diagnostic process of the artificial intelligence, which is regarded as a black box, could be visually understood by displaying the area of interest in color on CT images. This research may lead to the construction of diagnostic imaging assistance systems for radiologists and their technological development.

Academic Significance and Societal Importance of the Research Achievements

肺癌は世界的にも最も致死的な癌の一つであり、早期発見・診断を行い、適切な治療を行う必要がある。臨床の場での肺癌診断の最前線として、画像診断の寄与するところは大きいものの、CT画像のみから病理組織診断や浸潤成分を診断するには限界がある。近年、第三次人工知能(AI)ブームが到来し、医療分野においても人工知能技術の開発は目覚ましい。病理組織診断や病理学的浸潤成分、周囲への浸潤予測など腫瘍の悪性度に関するAIを開発することができれば、CT画像のみから、予後因子との関連性の検討や的確な治療方針の選択に役立てることが可能になると期待される。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (30 results)

All 2021 2020 2019 2018

All Journal Article (5 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 5 results,  Open Access: 2 results) Presentation (24 results) (of which Int'l Joint Research: 4 results,  Invited: 19 results) Book (1 results)

  • [Journal Article] Diagnostic performance for pulmonary adenocarcinoma on CT: comparison of radiologists with and without three-dimensional convolutional neural network.2021

    • Author(s)
      Yanagawa M, Niioka H, Kusumoto M, Awai K, Tsubamoto M, Satoh Y, Miyata T, Yoshida Y, Kikuchi N, Hata A, Yamasaki S, Kido S, Nagahara H, Miyake J, Tomiyama N.
    • Journal Title

      European Radiology

      Volume: 31 Issue: 4 Pages: 1978-1986

    • DOI

      10.1007/s00330-020-07339-x

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Application of deep learning (3-dimensional convolutional neural network) for the prediction of pathological invasiveness in lung adenocarcinoma: A preliminary study.2019

    • Author(s)
      Yanagawa M, Niioka H, Hata A, Kikuchi N, Honda O, Kurakami H, Morii E, Noguchi M, Watanabe Y, Miyake J, Tomiyama N
    • Journal Title

      Medicine (Baltimore)

      Volume: 98 Issue: 25 Pages: e16119-e16119

    • DOI

      10.1097/md.0000000000016119

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] 肺癌の定量的CT診断2019

    • Author(s)
      梁川雅弘、富山憲幸
    • Journal Title

      肺癌

      Volume: 59 Issue: 1 Pages: 29-36

    • DOI

      10.2482/haigan.59.29

    • NAID

      130007607426

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] CTの被曝低減技術-逐次近似再構成法と人工知能を用いた画像再構成法ー2019

    • Author(s)
      梁川雅弘
    • Journal Title

      Respiratory medicine

      Volume: 35 Pages: 446-454

    • NAID

      40021918811

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Using Deep Learning Systems to Radiologically Predict Pathologic Invasiveness in Lung Adenocarcinoma.2018

    • Author(s)
      Yanagawa M, Tomiyama N.
    • Journal Title

      IASLC LUNG CANCER NEWS

      Volume: V3(N2) Pages: 8-14

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] KCR-JRS Conjoint Session ‘AI for Thoracic Imaging’2020

    • Author(s)
      Yanagawa M
    • Organizer
      The 79th Annual Meeting of the Japan Radiological Society
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Resident Seminar ‘Thoracic Imaging using AI for Residents’2020

    • Author(s)
      Yanagawa M
    • Organizer
      The 79th Annual Meeting of the Japan Radiological Society
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Elucidation of a Black Box using Gradient-Weighted Class Activation Maps (Grad-CAMs): What Aspects of CT Images Does Deep Learning See?2020

    • Author(s)
      Yanagawa M, Niioka H, Yamasaki S, Miyata T, Yoshida Y, Hata A, Satoh Y, Miyake J, Nagahara H, Tomiyama N.
    • Organizer
      The 79th Annual Meeting of the Japan Radiological Society
    • Related Report
      2020 Annual Research Report
  • [Presentation] 胸部画像診断における人工知能応用:悪性度や予後の予測、画質向上など2020

    • Author(s)
      梁川雅弘
    • Organizer
      第12回呼吸機能イメージング研究会学術集会
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] シンポジウム:「肺癌検診及び診断の現状と今後の課題:X線、CT、PET、AIを含めて」:肺癌診断の最前線:CT・AI診断とマネジメント2020

    • Author(s)
      梁川雅弘
    • Organizer
      第39回日本画像医学会学術集会
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 死後画像診断学 総論 CT画像の基礎2020

    • Author(s)
      梁川雅弘
    • Organizer
      令和元年度死因究明学コース
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 胸部腫瘍におけるAIを用いた画像診断:現状と将来2020

    • Author(s)
      梁川雅弘
    • Organizer
      第88回成人病公開講座
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 胸部CT画像の基礎:診断のポイントから最新情報まで2020

    • Author(s)
      梁川雅弘
    • Organizer
      本放射線技術学会近畿支部ステップアップ臨床セミナー
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 画像診断の現状と今後:コンピュータ支援診断・人工知能を含めて2020

    • Author(s)
      富山 憲幸
    • Organizer
      第34回愛媛放射線科医会総会・学術講演会
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 画像診断の現状と今後:コンピュータ支援診断・人工知能を含めて2020

    • Author(s)
      富山 憲幸
    • Organizer
      第64回日本呼吸器学会中国四国地方会(WEB開催)
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] The Combination of Deep Learning Based Denoising and Iterative Reconstruction on Ultra-Low-Dose Chest CT: Image Quality and Lung-RADS Evaluation.2019

    • Author(s)
      Hata A, Yanagawa M, Yoshida Y, Miyata T, Kikuchi N, Tsubamoto M, Honda O, Tomiyama N.
    • Organizer
      Radiological Society of North America 105th Scientific Assembly and Annual Meeting.
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] The Image Quality of the Newest Deep Learning Image Reconstruction on Chest CT.2019

    • Author(s)
      Hata A, Yanagawa M, Yoshida Y, Miyata T, Kikuchi N, Honda O, Tomiyama N. The Image Quality of the Newest Deep Learning Image Reconstruction on Chest CT.
    • Organizer
      Radiological Society of North America 105th Scientific Assembly and Annual Meeting.
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Utility of CT volumetry and AI for the evaluation of pulmonary nodule2019

    • Author(s)
      Tomiyama N.
    • Organizer
      Qiantang International Conference on Oncology
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 画像診断の現状と今後:コンピュータ支援診断・人工知能を含めて2019

    • Author(s)
      富山憲幸
    • Organizer
      第60回香川県放射線科医会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Prediction of Prognosis in Part-solid Ground-Glass Nodules using Deep Learning System: Validation Analyses of Prognostic Results by Automated Volumetric Analysis.2019

    • Author(s)
      梁川雅弘、新岡宏彦、渡邉嘉之、本多修、秦明典、菊地紀子、宮田知、吉田悠里子、三宅淳、富山憲幸
    • Organizer
      第78会日本医学放射線学会総会
    • Related Report
      2019 Research-status Report
  • [Presentation] 人工知能は肺癌のどこを見て診断しているのか?-ブラックボックスからホワイトボックスへの架け橋―2019

    • Author(s)
      梁川雅弘
    • Organizer
      Idiopathic Pulmonary Fibrosis Seminar
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 「講演1 テーマ:胸部領域の診断」 胸部腫瘍性病変の画像診断 Up-To-Date2019

    • Author(s)
      梁川雅弘
    • Organizer
      第22回 関西Radiology Update講演会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 「肺腺癌の浸潤を考える」部分充実型結節を示す肺腺癌の浸潤について2019

    • Author(s)
      梁川雅弘
    • Organizer
      第45回肺癌診断会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Quantitative Imaging of Pulmonary Nodules for Chest Radiologists.2018

    • Author(s)
      Yanagawa M.
    • Organizer
      Imaging in Hawaii
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Quantitative Imaging of Pulmonary Nodules: Current Status and Future.2018

    • Author(s)
      Yanagawa M.
    • Organizer
      Korea Congress of Radiology.
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 人工知能(深層学習)を用いた肺癌の画像診断:上皮内腺癌(AIS)、微少潤性腺癌(MIA)、浸潤性腺癌(IVA)の鑑別2018

    • Author(s)
      梁川雅弘、新岡宏彦、大東寛典、田川聖一、本多修、秦明典、菊地紀子、宮田知、三宅淳、富山憲幸
    • Organizer
      第10回呼吸機能イメージング研究会学術集会
    • Related Report
      2018 Research-status Report
  • [Presentation] 人工知能が導く「肺癌の画像診断」:悪性度や予後予測への応用2018

    • Author(s)
      梁川雅弘
    • Organizer
      第14回横断的腫瘍フォーラム
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 肺癌の画像解析:定量化や人工知能が導くこれからの画像診断2018

    • Author(s)
      梁川雅弘
    • Organizer
      第42回新潟肺癌研究会総会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 画像定量化や人工知能を用いた肺癌の画像診断2018

    • Author(s)
      梁川雅弘
    • Organizer
      胸部腫瘍画像研究会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Book] マネジメントに苦慮する疾患 2.肺のすりガラス状結節に対するマネジメント2020

    • Author(s)
      梁川雅弘、富山憲幸
    • Total Pages
      8
    • Publisher
      日独医報
    • Related Report
      2020 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi