Project/Area Number |
18K11169
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 60010:Theory of informatics-related
|
Research Institution | Seikei University (2021-2022) Yokohama City University (2018-2020) |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
大舘 陽太 名古屋大学, 情報学研究科, 准教授 (80610196)
|
Project Period (FY) |
2018-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | 固定パラメータ困難問題 / グラフアルゴリズム / 木幅 / 固定パラメータ容易アルゴリズム / 頂点インテグリティ / 固定パラメータ容易性 / パス幅 / モジュラ幅 |
Outline of Final Research Achievements |
It is often the case that problems that are hard to solve on a general graph can be quickly solved if the graph has a tree-like structure. However, there are known problems that remain hard to solve even when the graph is tree-like. In such cases, the main focus of this research is to elucidate, in a general manner as much as possible, what needs to be considered in order to create efficient algorithms. Throughout the research period, we have been developing algorithms related to parameters that have not received much attention so far. As a result, we have been able to demonstrate, in a more general manner than before, what properties a graph can possess in order to develop efficient algorithms even for challenging problems.
|
Academic Significance and Societal Importance of the Research Achievements |
木幅が小さいグラフにおいて解くことが難しい問題について、より制限を厳しくし、頂点被覆というパラメータが小さい場合に高速に動作するアルゴリズムを考えることがある。しかし頂点被覆が小さいグラフというのはまれである。そこで木幅と頂点被覆の間にあるパラメータに関するアルゴリズムを考えることで、頂点被覆が小さいグラフよりもより一般的なグラフについて対処することが可能になった。また問題の難しさの本質がどこにあるのかの理解がより進んだ。
|