• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies toward disproving the strong exponential time hypothesis

Research Project

Project/Area Number 18K11170
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60010:Theory of informatics-related
Research InstitutionHokkaido University (2020-2021)
Seikei University (2018-2019)

Principal Investigator

Seto Kazuhisa  北海道大学, 情報科学研究院, 准教授 (20584056)

Co-Investigator(Kenkyū-buntansha) 長尾 篤樹  お茶の水女子大学, 基幹研究院, 助教 (20802622)
Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords強指数時間仮説 / 充足可能性問題 / 厳密アルゴリズム / 充足可能性判定 / 幅限定分岐プログラム / 置換分岐プログラム / 分岐プログラム / 幅限定 / 指数時間仮説 / 計算量理論
Outline of Final Research Achievements

The Strong Exponential Time Hypothesis (SETH) states that for the satisfiability problem of conjunctive normal forms (CNFs), there is no algorithm exponentially faster than the brute-force search.If this hypothesis is true, we cannot improve the current best upper bounds of running time for many problems.
In this research, to disprove SETH in the future, we investigated and studied on it. As a result, by developing satisfiability algorithms for some kinds of computational models including CNFs, we clarified some structures of CNFs whose satisfiability can be solved exponentially faster than the brute-force search.

Academic Significance and Societal Importance of the Research Achievements

現実世界のさまざまな問題が和積標準形論理式の充足可能性問題に定式化できることが知られている。そのため、この問題を高速に解くアルゴリズムを構築することは重要である。しかし、理論的には全探索よりも本質的に高速なアルゴリズムは存在しないという強指数時間仮説がある。本研究では、実際にアルゴリズムを設計することで、全探索よりも指数的に高速にとける一部の構造を示している。この結果により、強指数時間仮説を否定するためにはどのような構造をもつ問題を考える必要があるかも明らかにしている。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (3 results)

All 2022 2020 2019

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 2 results)

  • [Journal Article] A Satisfiability Algorithm for Deterministic Width-2 Branching Programs2022

    • Author(s)
      Tomu MAKITA, Atsuki NAGAO, Tatsuki OKADA, Kazuhisa SETO, Junichi TERUYAMA
    • Journal Title

      IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences

      Volume: E105.A Issue: 9 Pages: 1298-1308

    • DOI

      10.1587/transfun.2021EAP1120

    • ISSN
      0916-8508, 1745-1337
    • Year and Date
      2022-09-01
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Satisfiability Algorithm for Syntactic Read-k-times Branching Programs2020

    • Author(s)
      Atsuki Nagao, Kazuhisa Seto, and Junichi Teruyama
    • Journal Title

      Theory of Computing Systems

      Volume: 64 Issue: 8 Pages: 1392-1407

    • DOI

      10.1007/s00224-020-09996-3

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Bounded depth circuits with weighted symmetric gates: Satisfiability, lower bounds and compression2019

    • Author(s)
      Sakai Takayuki、Seto Kazuhisa、Tamaki Suguru、Teruyama Junichi
    • Journal Title

      Journal of Computer and System Sciences

      Volume: 印刷中 Pages: 87-103

    • DOI

      10.1016/j.jcss.2019.04.004

    • Related Report
      2018 Research-status Report
    • Peer Reviewed

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi