• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Estimation of Mutual Information for Continuous Variables and its Applications to Graphical Model Construction

Research Project

Project/Area Number 18K11192
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60030:Statistical science-related
Research InstitutionOsaka University

Principal Investigator

Suzuki Joe  大阪大学, 大学院基礎工学研究科, 教授 (50216397)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords相互情報量 / グラフィカルモデル / ベイジアンネットワーク / LiNGAM / 独立性検定 / 因果推論 / 森の生成 / 相互情報量の推定 / ゲノム解析 / 事後確率最大
Outline of Final Research Achievements

This research focuses on the estimation of mutual information in data involving continuous variables and the construction of graphical models. In 2018, we achieved consistency and independence detection in mutual information estimation and presented these results at an international conference. In 2019, we established a method for estimating mutual information in data with continuous variables. In 2020, we proposed a causal discovery method considering confounding factors. In 2021, we developed a method for identifying causal order allowing for the presence of confounders. In 2022, we extended the concept of conditional mutual information. In 2023, we validated the practicality of the proposed methods. These findings have been published in 11 journal articles, including the IEEE Transactions on Information Theory, and presented at four international conferences.

Academic Significance and Societal Importance of the Research Achievements

連続変量を含むデータの相互情報量の正確な推定とグラフィカルモデルの構築を実現し、データ解析や機械学習の分野での新たな手法を提供した。これにより、遺伝子ネットワーク解析や経済データの依存関係解析など、複雑なデータの構造解明が可能となった。また、医療データ解析や金融リスク評価などの実世界の問題解決に応用が期待される。さらに、提案手法の普及を通じて、様々な分野でのデータ活用が促進され、社会全体のデータリテラシー向上にも寄与している。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (48 results)

All 2024 2023 2022 2021 2020 2019 2018 Other

All Int'l Joint Research (2 results) Journal Article (14 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 12 results,  Open Access: 5 results) Presentation (17 results) (of which Int'l Joint Research: 7 results,  Invited: 5 results) Book (15 results)

  • [Int'l Joint Research] Chulalongkorn University/Mahidol University(タイ)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] コペンハーゲン大学(デンマーク)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Dropout drops double descent2024

    • Author(s)
      Yang Tian-Le、Suzuki Joe
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 7 Issue: 2 Pages: 1-1

    • DOI

      10.1007/s42081-024-00242-5

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Functional linear non-Gaussian acyclic model for causal discovery2024

    • Author(s)
      Yang Tian-Le、Lee Kuang-Yao、Zhang Kun、Suzuki Joe
    • Journal Title

      Behaviormetrika

      Volume: 51 Issue: 2 Pages: 1-1

    • DOI

      10.1007/s41237-024-00226-5

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Forest construction of Gaussian and discrete variables with the application of Watanabe Bayesian Information Criterion2024

    • Author(s)
      Islam Ashraful、Suzuki Joe
    • Journal Title

      Behaviormetrika

      Volume: 51 Issue: 2 Pages: 1-1

    • DOI

      10.1007/s41237-024-00227-4

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Newton-Type Methods with the Proximal Gradient Step for Sparse Estimation2024

    • Author(s)
      Shimmura Ryosuke、Suzuki Joe
    • Journal Title

      Operations Research Forum

      Volume: 5 Issue: 2 Pages: 1-1

    • DOI

      10.1007/s43069-024-00307-x

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Estimation of a Simple Structure in a Multidimensional IRT Model Using Structure Regularization2023

    • Author(s)
      Shimmura Ryosuke、Suzuki Joe
    • Journal Title

      Entropy

      Volume: 26 Issue: 1 Pages: 44-44

    • DOI

      10.3390/e26010044

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Extending Hilbert?Schmidt Independence Criterion for Testing Conditional Independence2023

    • Author(s)
      Zhang Bingyuan、Suzuki Joe
    • Journal Title

      Entropy

      Volume: 25 Issue: 3 Pages: 425-425

    • DOI

      10.3390/e25030425

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Converting ADMM to a proximal gradient for efficient sparse estimation2022

    • Author(s)
      Shimmura Ryosuke、Suzuki Joe
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 5 Issue: 2 Pages: 725-745

    • DOI

      10.1007/s42081-022-00150-6

    • Related Report
      2022 Research-status Report 2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] The Functional LiNGAM2022

    • Author(s)
      Tianle Yang, Joe Suzuki
    • Journal Title

      PMLR (Probabilistic Graphical Models)

      Volume: 186 Pages: 25-36

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Causal order identification to address confounding: binary variables2021

    • Author(s)
      Suzuki Joe、Inaoka Yusuke
    • Journal Title

      Behaviormetrika

      Volume: 49 Issue: 1 Pages: 5-21

    • DOI

      10.1007/s41237-021-00149-5

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] An Efficient Algorithm for Convex Biclustering2021

    • Author(s)
      Chen Jie、Suzuki Joe
    • Journal Title

      Mathematics

      Volume: 9 Issue: 23 Pages: 3021-3021

    • DOI

      10.3390/math9233021

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Efficient Proximal Gradient Algorithms for Joint Graphical Lasso2021

    • Author(s)
      Chen Jie、Shimmura Ryosuke、Suzuki Joe
    • Journal Title

      Entropy

      Volume: 23 Issue: 12 Pages: 1623-1623

    • DOI

      10.3390/e23121623

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Why BDeu ? Regular Bayesian network structure learning with discrete and continuous variables2021

    • Author(s)
      Suzuki Joe
    • Journal Title

      WIREs Computational Statistics

      Volume: 1 Issue: 4 Pages: 1-1

    • DOI

      10.1002/wics.1554

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] 統計学の使い方より,本質を見抜く力―機械学習の数理 100問シリーズと凸最適化への期待 ―2020

    • Author(s)
      鈴木 讓
    • Journal Title

      オペレーションズ・リサーチ

      Volume: 65 Pages: 551-556

    • Related Report
      2020 Research-status Report
  • [Journal Article] Forest Learning From Data and its Universal Coding2018

    • Author(s)
      Suzuki, Joe
    • Journal Title

      IEEE Transactions on Information Theory

      Volume: 64 Issue: 11 Pages: 7349-7358

    • DOI

      10.1109/tit.2018.2869215

    • Related Report
      2018 Research-status Report
  • [Presentation] Dropout Diminishes Double Descent Similar to Ridge2024

    • Author(s)
      Tianle Yang and Joe Suzuki
    • Organizer
      International Workshop on Deep Learning and Kernel Machines, Leuven
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Latent Pushforward Measure for Gaussian Process2024

    • Author(s)
      Yasuhiro Sekiya, Joe Suzuki
    • Organizer
      International Workshop on Deep Learning and Kernel Machines, Leuven
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Extension of LiNGAM to functional data2023

    • Author(s)
      Tianle Yang and Joe Suzuki
    • Organizer
      The 6th International Conference on Econometrics and Statistics (EcoSta 2023), Tokyo
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Solve 100 Problems of Math and R/Python for Statistical Learning2022

    • Author(s)
      Suzuki, Joe
    • Organizer
      IASC-ARS2022
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 統計学の使い方より本質を見抜く力2020

    • Author(s)
      鈴木 讓
    • Organizer
      統計関連学会連合大会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] A Causal Order Identification extended for dealing with Confounding: Discrete Variables J SUZUKI, Y INAOKA 電子情報通信学会技術研究報告 (Web) 120 (195 (IBISML2020 8-33)), 49-542020

    • Author(s)
      稲岡雄介、鈴木讓
    • Organizer
      IBIS研究会
    • Related Report
      2020 Research-status Report
  • [Presentation] A Proximal Gradient Method for Convex Clustering2020

    • Author(s)
      新村亮介、鈴木讓
    • Organizer
      IBIS研究会
    • Related Report
      2020 Research-status Report
  • [Presentation] 交絡の存在を許容するLiNGAMの一般化2020

    • Author(s)
      鈴木讓
    • Organizer
      IBISワークシップ
    • Related Report
      2020 Research-status Report
  • [Presentation] Mutual Information Estimation: Independence Detection and Consistency2019

    • Author(s)
      Joe Suzuki
    • Organizer
      IEEE International Symposium on Information Theory
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 日本行動計量学会47大会2019

    • Author(s)
      鈴木讓
    • Organizer
      The Branch and Bound for Bayesian Network Structure Learning
    • Related Report
      2019 Research-status Report
  • [Presentation] 機械学習の数理100問のR言語バージョン2019

    • Author(s)
      鈴木讓
    • Organizer
      データ解析環境Rの整備と利用
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] R パッケージ BNSL: 連続と離散を区別しない無向森とDAGの構造学習2019

    • Author(s)
      鈴木讓
    • Organizer
      人工知能学会人工知能基本問題研究会
    • Related Report
      2018 Research-status Report
  • [Presentation] RパッケージBNSLで、大規模なグラフを構成する2018

    • Author(s)
      鈴木讓
    • Organizer
      人工知能学会合同研究会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] E-learning Development of Statistics and in Duex: Practical Approaches and their Tips for High-Quality Courses2018

    • Author(s)
      Joe Suzuki
    • Organizer
      International Conference on Education of Data Science
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Branch and Bound for Continuous Bayesian Network Structure Learning2018

    • Author(s)
      Joe Suzuki
    • Organizer
      Workshop on Probabilistic Graphical Models
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 分枝限定法でモデル選択の計算量を低減する2018

    • Author(s)
      鈴木讓
    • Organizer
      行動計量学会第46回大会
    • Related Report
      2018 Research-status Report
  • [Presentation] 情報量基準を用いた混合正規分布のモデル推定2018

    • Author(s)
      吉岡凛太郎, 鈴木讓
    • Organizer
      行動計量学会第46回大会
    • Related Report
      2018 Research-status Report
  • [Book] WAIC and WBIC with R Stan: 100 Exercises for Building Logic2023

    • Author(s)
      Suzuki, Joe
    • Total Pages
      230
    • Publisher
      Springer
    • Related Report
      2023 Annual Research Report
  • [Book] WAIC and WBIC with Python Stan: 100 Exercises for Building Logic2023

    • Author(s)
      Suzuki, Joe
    • Total Pages
      230
    • Publisher
      Springer
    • Related Report
      2023 Annual Research Report
  • [Book] 渡辺澄夫ベイズ理論 with R/Stan2023

    • Author(s)
      鈴木 讓
    • Total Pages
      242
    • Publisher
      共立出版
    • Related Report
      2023 Annual Research Report
  • [Book] Kernel Methods for Machine Learning with Math and Python2022

    • Author(s)
      Joe Suzuki
    • Total Pages
      208
    • Publisher
      Springer
    • ISBN
      9789811904004
    • Related Report
      2022 Research-status Report
  • [Book] Kernel Methods for Machine Learning with Math and R2022

    • Author(s)
      Joe Suzuki
    • Total Pages
      196
    • Publisher
      Springer
    • ISBN
      9789811903977
    • Related Report
      2022 Research-status Report
  • [Book] Sparse Estimation with Math and R: 100 Exercises for Building Logic2021

    • Author(s)
      Suzuki, Joe
    • Total Pages
      240
    • Publisher
      Springer
    • Related Report
      2021 Research-status Report
  • [Book] Sparse Estimation with Math and Python: 100 Exercises for Building Logic2021

    • Author(s)
      Suzuki, Joe
    • Total Pages
      250
    • Publisher
      Springer
    • Related Report
      2021 Research-status Report
  • [Book] Statistical Learning with Math and Python: 100 Exercises for Building Logic2021

    • Author(s)
      Suzuki, Joe
    • Total Pages
      220
    • Publisher
      Springer
    • Related Report
      2021 Research-status Report
  • [Book] 機械学習のためのカーネル100問 with R2021

    • Author(s)
      鈴木 讓
    • Total Pages
      200
    • Publisher
      共立出版
    • ISBN
      9784320125124
    • Related Report
      2021 Research-status Report
  • [Book] 機械学習のためのカーネル100問 with Python2021

    • Author(s)
      鈴木 讓
    • Total Pages
      216
    • Publisher
      共立出版
    • ISBN
      9784320125131
    • Related Report
      2021 Research-status Report
  • [Book] スパース推定100問 with Python2021

    • Author(s)
      鈴木 讓
    • Total Pages
      260
    • Publisher
      共立出版
    • ISBN
      9784320125094
    • Related Report
      2020 Research-status Report
  • [Book] Statistical Learning with Math and R2020

    • Author(s)
      Joe Suzuki
    • Total Pages
      220
    • Publisher
      Springer
    • ISBN
      9789811575686
    • Related Report
      2020 Research-status Report
  • [Book] 統計的機械学習の数理100問 with Python2020

    • Author(s)
      鈴木 讓
    • Total Pages
      272
    • Publisher
      共立出版
    • ISBN
      9784320125070
    • Related Report
      2020 Research-status Report 2019 Research-status Report
  • [Book] スパース推定100問 with R2020

    • Author(s)
      鈴木 讓
    • Total Pages
      240
    • Publisher
      共立出版
    • ISBN
      9784320125087
    • Related Report
      2020 Research-status Report
  • [Book] 統計的機械学習の数理100問 with R2020

    • Author(s)
      鈴木 讓
    • Total Pages
      256
    • Publisher
      共立出版
    • ISBN
      9784320125063
    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi