• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Brain structure network analysis based on local similarity for neurodegenerative disorders

Research Project

Project/Area Number 18K12025
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 90110:Biomedical engineering-related
Research InstitutionThe University of Tokyo (2020-2021)
National Center of Neurology and Psychiatry (2018-2019)

Principal Investigator

Maikusa Norihide  東京大学, 大学院総合文化研究科, 特任助教 (80631069)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
KeywordsMRI / 脳変性疾患 / 認知症 / 脳構造ネットワーク解析 / T1強調像 / 個人内脳構造ネットワーク / 構造ネットワーク / Similarity Matrix / Graph analysis / Brain / Graph解析
Outline of Final Research Achievements

Although the small-world configuration was maintained in the patient group, a global reduction in clustering coefficients was observed in the left and right TLE. At the local level, patients with left-sided TLE showed a widespread reduction in clustering coefficients beyond the ipsilateral temporal lobe and a decrease in characteristic path length at the ipsilateral temporal pole. In contrast, right-sided TLE patients showed a decrease in clustering coefficients confined to the ipsilateral temporal lobe.
Compared to controls, the TLE patients showed a disruption of global and local network properties, suggesting a shift toward a randomized network. This network change was more extensive in left-sided TLE patients than in right-sided TLE patients.

Academic Significance and Societal Importance of the Research Achievements

本研究の成果により、局所的類似度に基づく脳構造ネットワーク解析が脳変性疾患における疾患の識別に有効であることが示された。
これは従来の解剖学的関心領域内の脳体積測定や、Voxel Based Morphometryに代わる新たな解析手法になりうることを示唆している。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (2 results)

All 2021

All Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (1 results) (of which Invited: 1 results)

  • [Journal Article] Single-subject gray matter networks in temporal lobe epilepsy patients with hippocampal sclerosis2021

    • Author(s)
      Shigemoto Yoko,Maikusa Norihide, Matsuda Hiroshi et al.
    • Journal Title

      Epilepsy Research

      Volume: 177 Pages: 106766-106766

    • DOI

      10.1016/j.eplepsyres.2021.106766

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] MRI画像による脳構造解析のいまとこれから~新たな脳体積測定法が切り拓く認知症医療~2021

    • Author(s)
      舞草伯秀
    • Organizer
      第5回 日本脳神経外科認知症学会学術総会
    • Related Report
      2021 Annual Research Report
    • Invited

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi