• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

development of bony lesion detection system for CT images by unsupervised deep learning

Research Project

Project/Area Number 18K12095
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 90130:Medical systems-related
Research InstitutionThe University of Tokyo

Principal Investigator

Hanaoka Shouhei  東京大学, 医学部附属病院, 講師 (80631382)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords医用画像処理 / 深層学習 / X線CT / 骨転移 / 時間差分 / 異常検知 / 骨疾患 / ディープラーニング
Outline of Final Research Achievements

We developed a computer program which can estimate each voxel value of the latest CT examination from voxel values of the previous CT examination. Furthermore, it can also estimate the estimation error. Using these estimated CT value and the error, z-score of each voxel in the latest CT examination is calculated so that the anomaly-highlighted image is displayed. The proposed system was validated with a real film-reading environment. The experiment was performed with 11 radiologists and 80 datasets, and the improve of the receiver operating characteristic (ROC) curve was confirmed using the proposed temporary subtracted CT.

Academic Significance and Societal Importance of the Research Achievements

CT画像においてしばしば主治医や放射線科読影医によって見逃される早期のがん骨転移について、その検出を助ける骨病変抽出・強調表示手法が開発できた。これにより、がん骨転移をより早期に発見し治療できることが期待され、がん患者の予後、quality of lifeの向上に資すことができることと期待される。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (5 results)

All 2021 2019 2018

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (2 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Unsupervised Deep Anomaly Detection in Chest Radiographs2021

    • Author(s)
      Nakao Takahiro、Hanaoka Shouhei、Nomura Yukihiro、Murata Masaki、Takenaga Tomomi、Miki Soichiro、Watadani Takeyuki、Yoshikawa Takeharu、Hayashi Naoto、Abe Osamu
    • Journal Title

      Journal of Digital Imaging

      Volume: n/a Issue: 2 Pages: 418-427

    • DOI

      10.1007/s10278-020-00413-2

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Clinical usefulness of temporal subtraction CT in detecting vertebral bone metastases2019

    • Author(s)
      Hoshiai Sodai、Masumoto Tomohiko、Hanaoka Shouhei、Nomura Yukihiro、Mori Kensaku、Hara Tadashi、Saida Tsukasa、Okamoto Yoshikazu、Minami Manabu
    • Journal Title

      European Journal of Radiology

      Volume: 118 Pages: 175-180

    • DOI

      10.1016/j.ejrad.2019.07.024

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] HoTPiG: a novel graph-based 3-D image feature set and its applications to computer-assisted detection of cerebral aneurysms and lung nodules2019

    • Author(s)
      Hanaoka Shouhei、Nomura Yukihiro、Takenaga Tomomi、Murata Masaki、Nakao Takahiro、Miki Soichiro、Yoshikawa Takeharu、Hayashi Naoto、Abe Osamu、Shimizu Akinobu
    • Journal Title

      International Journal of Computer Assisted Radiology and Surgery

      Volume: epub ahead Issue: 12 Pages: 2095-2107

    • DOI

      10.1007/s11548-019-01942-0

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Development of temporal subtraction CT images using deep learning to detect vertebral bone metastases2021

    • Author(s)
      星合壮大、花岡昇平、野村行弘、他
    • Organizer
      第80回日本医学放射線学会総会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Residual network-based unsupervised temporal image subtraction for highlighting bone metastases2018

    • Author(s)
      Shouhei Hanaoka
    • Organizer
      CARS 2018, Berlin, 18th May, 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi