• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Interdisciplinary research of arithmetic geometry and quantum field theory related to the moduli space of hyperbolic curves

Research Project

Project/Area Number 18K13385
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11010:Algebra-related
Research InstitutionTokyo Institute of Technology

Principal Investigator

Wakabayashi Yasuhiro  東京工業大学, 理学院, 助教 (80765397)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2020: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2019: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywordsモジュライ空間 / 微分方程式 / oper / p曲率 / 接続 / 代数曲線 / 正標数 / dormant oper / 位相的場の理論 / 数え上げ幾何学 / 休眠固有束 / Belyiの定理 / Frobenius射影構造 / 変形量子化 / 代数曲線のモジュライ / 固有束 / 射影構造 / p進タイヒミュラー理論 / べき零固有束 / モジュライ / ベーテ仮説方程式
Outline of Final Research Achievements

In this research, we established the theory of opers (generalizations of ordinary differential operators) defined on pointed stable curves in arbitrary characteristic and their moduli. In particular, it includes the development of the study of dormant opers, which are opers of a certain sort in positive characteristic. As a main result of this research, we given an explicit formula, conjectured by Joshi, for the generic number of dormant opers. We do so by obtaining a detailed understanding of the moduli space of dormant opers and computing the Gromov-Witten invariant for relative Grassmaniann varieties. This result reveals an interaction between studies in p-adic Teichmuller theory and certain areas of enumerative geometry, including Gromov-WItten theory.

Academic Significance and Societal Importance of the Research Achievements

微分方程式あるいはその解の数論的性質に関する研究は数学において重要なテーマの一つである.本研究では,とくに正標数の場合における微分方程式およびその一般化に対する基礎理論を拡張・構築した.その結果,p進Teichmuller理論において展開されるモジュライ理論と組み合わせ論やGromov-Witten理論などの数え上げ幾何との間にある顕著な繋がりを明らかにした.その応用として,微分方程式の数え上げに関する未解決問題を証明した.このように本研究の成果は,代数的微分方程式論に対する新たな手法と観点を導入し,様々な分野の相互的発展を可能にさせるものであり,多大な波及効果が今後期待できる.

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (18 results)

All 2022 2021 2020 2019 2018

All Journal Article (7 results) (of which Peer Reviewed: 5 results) Presentation (11 results) (of which Int'l Joint Research: 7 results,  Invited: 11 results)

  • [Journal Article] Symplectic geometry of p-adic Teichmuller uniformization for ordinary nilpotent indigenous bundles2022

    • Author(s)
      Yasuhiro Wakabayashi
    • Journal Title

      Tunisian J. Math.

      Volume: -

    • Related Report
      2021 Annual Research Report
  • [Journal Article] A theory of dormant opers on pointed stable curves2022

    • Author(s)
      Yasuhiro Wakabayashi
    • Journal Title

      Asterisque

      Volume: 432

    • Related Report
      2021 Annual Research Report
  • [Journal Article] An effective version of Belyi theorem in positive characteristic2021

    • Author(s)
      Yasuhiro Wakabayashi
    • Journal Title

      J. Number theory

      Volume: 231 Pages: 251-268

    • DOI

      10.1016/j.jnt.2021.04.028

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Moduli of Tango structures and dormant Miura opers2020

    • Author(s)
      Yasuhiro Wakabayashi
    • Journal Title

      Moscow Mathematical Journal

      Volume: 20 Issue: 3 Pages: 575-636

    • DOI

      10.17323/1609-4514-2020-20-3-575-636

    • Related Report
      2020 Research-status Report 2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Categorical representation of super schemes2020

    • Author(s)
      Yasuhiro Wakabayashi
    • Journal Title

      Pure and Applied Mathematics Quarterly

      Volume: 16 Issue: 5 Pages: 1635-1672

    • DOI

      10.4310/pamq.2020.v16.n5.a10

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Categorical representation of superschemes2020

    • Author(s)
      Yasuhiro Wakabayashi
    • Journal Title

      Pure and applied mathematical quarterly

      Volume: ー

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Spin networks, Ehrhart quasipolynomials, and combinatorics of dormant indigenous bundles2019

    • Author(s)
      Yasuhiro Wakabayashi
    • Journal Title

      Kyoto J. Math.

      Volume: 59 Pages: 649-684

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Introduction to p-adic Teichmuller theory2021

    • Author(s)
      Yasuhiro Wakabayashi
    • Organizer
      Promenade in Inter-Universal Teichmuller Theory
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] What is a Frobenius-projective structure?2021

    • Author(s)
      Yasuhiro Wakabayashi
    • Organizer
      城崎代数幾何学シンポジウム
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Frobenius-projective structures on higher dimensional varieties2020

    • Author(s)
      Yasuhiro Wakabayashi
    • Organizer
      2nd Kyoto-Hefei Workshop on Arithmetic Geometry
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Enumerative geometry of dormant opers2019

    • Author(s)
      Yasuhiro Wakabayashi
    • Organizer
      Representation Theory and D-modules
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Symplectic geometry of p-adic Teichmuller uniformization2019

    • Author(s)
      Yasuhiro Wakabayashi
    • Organizer
      The 8th East Asia Number Theory Conference
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Enumerative geometry of dormant opers2019

    • Author(s)
      Yasuhiro Wakabayashi
    • Organizer
      Representation Theory and D-modules(the University of Rennes 1)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 未定2019

    • Author(s)
      Yasuhiro Wakabayashi
    • Organizer
      The 8th East Asia Number Theory Conference(KAIST)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Dormant Miura opers and Tango structures2018

    • Author(s)
      若林泰央
    • Organizer
      代数幾何学セミナー(東京大学)
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 正標数の線型常微分方程式の数え上げについて2018

    • Author(s)
      若林泰央
    • Organizer
      大岡山談話会(東京工業大学)
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Symplectic aspects of the p-adic Teichmuller uniformization2018

    • Author(s)
      Yasuhiro Wakabayashi
    • Organizer
      p-adic cohomology and arithmetic geometry 2018(東北大学)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Enumerative geometry of dormant opers2018

    • Author(s)
      若林泰央
    • Organizer
      Langlands and Harmonic Analysis
    • Related Report
      2018 Research-status Report
    • Invited

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi