• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On constructions of asid bimodules

Research Project

Project/Area Number 18K13387
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11010:Algebra-related
Research InstitutionUniversity of Yamanashi

Principal Investigator

Yamaura Kota  山梨大学, 大学院総合研究部, 准教授 (60633245)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywordsasid加群 / 岩永-Gorenstein環 / 自明拡大環 / 導来圏 / 安定圏 / 三角圏 / 特異導来圏
Outline of Final Research Achievements

From an algebra R and its bimodule C, one can construct a graded algebra so called the trivial extension. If the trivial extension is Iwanaga-Gorenstein, then the bimodule C is called an asid bimodule over R. In this study, we analyzed structures of asid bimodules, and obtained several results. For example, we had the following two observations of asid bimodules over some algebra R. Every asid bimodule is a direct sum of an asid bimodule whose asid number is one and a nilpotent bimodule with respect to tensor product. The set of all asid bimodules whose asid numbers are one have a structure of a group. In the context of these observations, we showed that the similar claims hold under suitable setting.

Academic Significance and Societal Importance of the Research Achievements

本研究の対象であるasid加群は近年に導入・深く研究され,その表現論的意味が明らかになったばかりの加群である.従ってまだ,それほど知見が蓄積していない研究対象である.本研究により,asid加群の研究ではasid数1のasid加群およびその一般化が重要であり,そこには群という良い構造が現れること,適当な設定の下では傾複体との関係があることなどが示された.これにより,asid加群は既存の数学的対象と結びついており,豊かな構造を持つことがわかってきた.

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (6 results)

All 2019 2018 Other

All Presentation (3 results) (of which Int'l Joint Research: 2 results,  Invited: 1 results) Remarks (3 results)

  • [Presentation] Happel's functor and homologically well-graded Iwanaga-Gorenstein algebras2019

    • Author(s)
      Kota Yamaura
    • Organizer
      The Eighth China-Japan-Korea International Symposium on Ring Theory
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 次数付き環の岩永-Gorenstein 性と三角圏2019

    • Author(s)
      山浦 浩太
    • Organizer
      第64回 代数学シンポジウム
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] On homologically well-graded Iwanaga-Gorenstein algebras2018

    • Author(s)
      Kota Yamaura
    • Organizer
      International Conference on Representations of Algebras 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Remarks] Kota Yamaura's Homepage

    • URL

      https://www.ccn.yamanashi.ac.jp/~kyamaura/index.html

    • Related Report
      2021 Annual Research Report 2020 Research-status Report
  • [Remarks] Kota Yamaura's Homepage

    • URL

      http://www.ccn.yamanashi.ac.jp/~kyamaura/

    • Related Report
      2019 Research-status Report
  • [Remarks] Kota Yamaura's Homepage

    • URL

      http://www.ccn.yamanashi.ac.jp/~kyamaura/index.html

    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi