Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Outline of Final Research Achievements |
In this research we consider loop-erased random walk (LERW) and its scaling limit in three dimensions, and prove that 3D LERW parametrized by renormalized length converges to its scaling limit parametrized by some suitable measure with respect to the uniform convergence topology in the lattice size scaling limit. Our result greatly improves the work of Gady Kozma which establishes the weak convergence of the rescaled trace of 3D LERW towards a random compact set with respect to the Hausdorff distance. To prove this, we also need to give an asymptotic estimate on the one-point function for LERW and the non-intersection probability of LERW and simple random walk in three dimensions for dyadic scales. These estimates will be crucial to the characterization of the convergence of LERW to its scaling limit in natural parametrization. As a step in the proof, we also obtain a coupling of two pairs of LERW and SRW with different starting points conditioned to avoid each other.
|