• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Values of Hypergeometric Series

Research Project

Project/Area Number 18K13428
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionChiba Institute of Technology

Principal Investigator

EBISU Akihito  千葉工業大学, 情報科学部, 准教授 (70772672)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2021: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2020: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords超幾何関数 / 差分方程式の不変量 / Pade近似 / 隣接関係式 / 変換公式 / 特殊値 / Dotsenko-Fateev方程式 / 連分数 / パデ近似 / 代数変換 / 完全楕円積分 / 超幾何微分方程式 / 超幾何級数 / Fuchs型方程式 / Dotsenko-Fateev 方程式 / 超幾何関数の変換公式 / 漸近解析
Outline of Final Research Achievements

The aim of this research was to investigate values of hypergeometric fuctions. The followings are our results:
(1) We constuct some Pade approximations for ratios of Gauss's hypergeometric fuctions. Using these, continued fraction expansions for those ratios are obtained. Also, truncation errors of the n-th approximant for those continued fraction expansions are given.
(2) We introduce invariants of linear difference equations. Using these, we can search whether a given linear difference equation has solutions expressed in terms of hypergergeometric functions or not. Applying this method, we got the followings:(i) Algebraic transformation formulas for Gauss's hypergeoemtric functions and Appell's hypergeometric functions are systematically obtained. (ii) Series solutions of unsolved Fuchsian differential equations(e.g. Dotsenko-Fateev equation) are constructed. (iii) Series expansions of holomorphic solutions at unit argument of the generalized hypergeometric equation 3E2 are constucted.

Academic Significance and Societal Importance of the Research Achievements

超幾何関数は多くの良い性質を持つが故に様々な分野に現れ、特にその特殊値を用いて多くの量が表されている。得られた成果の内、以下の2点は様々なことに利用されると考えられる。(i)応用上、難しい関数である超幾何関数をよく分かる関数である有理式で近似すること(Pade近似)は重要である。そこで、超幾何関数の比のPade近似およびそれらの誤差評価を行った。(ii)多くの現象が線形差分方程式を用いて記述される。今回導入した差分方程式の不変量により、与えられた線形差分方程式が超幾何関数の値を用いて表されるか検索できるようになった。これにより、差分方程式を用いて記述される現象の解明が期待出来るようになった。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (22 results)

All 2023 2022 2021 2019 2018 Other

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 2 results) Presentation (17 results) (of which Int'l Joint Research: 3 results,  Invited: 6 results) Remarks (1 results)

  • [Journal Article] A study of a Fuchsian system of rank 8 in 3 variables and the ordinary differential equations as its restrictions2023

    • Author(s)
      Akihito Ebisu, Yoshishige Haraoka, Masanobu Kaneko, Hiroyuki Ochiai, Takeshi Sasaki, Masaaki Yoshida
    • Journal Title

      Osaka Journal of Mathematics

      Volume: 60(1) Pages: 153-206

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 一般化超幾何微分方程式3E2のx=1における正則解2023

    • Author(s)
      蛭子彰仁
    • Journal Title

      数理解析研究所講究録別冊

      Volume: B91 Pages: 45-68

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Contiguous relations, Laplace's methods, and continued fractions for 3F2(1)2019

    • Author(s)
      Akihito Ebisu and Katsunori Iwasaki
    • Journal Title

      Ramanujan Journal

      Volume: - Issue: 1 Pages: 159-213

    • DOI

      10.1007/s11139-018-0039-2

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Three-term relations for 3F2(1)2018

    • Author(s)
      Akihito Ebisu and Katsunori Iwasaki
    • Journal Title

      J. Math. Anal. Appl.

      Volume: 463 Issue: 2 Pages: 593-610

    • DOI

      10.1016/j.jmaa.2018.03.034

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Identities for hypergeometric functions: from the view point of contiguous relations2022

    • Author(s)
      Akihito Ebisu
    • Organizer
      Darfセミナー
    • Related Report
      2022 Annual Research Report
  • [Presentation] 超幾何関数の変換公式について2022

    • Author(s)
      蛭子彰仁
    • Organizer
      特殊多様体・特殊関数研究会
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 一般超幾何微分方程式 3E2 の x=1 における正則解2021

    • Author(s)
      蛭子 彰仁
    • Organizer
      2021年度函数方程式論サマーセミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] 一般超幾何微分方程式 3E2 の x=1 における正則解2021

    • Author(s)
      蛭子 彰仁
    • Organizer
      可積分系数理の諸相
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 超幾何関数と差分方程式2021

    • Author(s)
      蛭子彰仁
    • Organizer
      日本数学会年会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] 差分方程式の不変量とその応用2019

    • Author(s)
      蛭子 彰仁
    • Organizer
      千葉大学解析セミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] 差分方程式の不変量とその応用2019

    • Author(s)
      蛭子 彰仁
    • Organizer
      広島複素解析セミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] Invariants of difference equations and transformation formulae for hypergeometric functions2019

    • Author(s)
      Akihito Ebisu
    • Organizer
      15th International Symposium on Orthogonal Polynomials, Special Functions and Applications
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Dotsenko-Fateev 方程式の解について2019

    • Author(s)
      蛭子 彰仁
    • Organizer
      2019年度函数方程式論サマーセミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] Invariants of difference equations and transformation formulae for hypergeometric functions2019

    • Author(s)
      Akihito Ebisu
    • Organizer
      仙台ワークショップ「Hypergeometric Series, Mahler Measures, and Multiple Zeta Values」
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Invariants of difference equations and transformation formulae for hypergeometric functions2019

    • Author(s)
      Akihito Ebisu
    • Organizer
      Differential systems: from theory to computer mathematics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 差分方程式の不変量と超幾何関数の変換公式2019

    • Author(s)
      蛭子彰仁
    • Organizer
      第17回北海道特殊関数セミナー
    • Related Report
      2018 Research-status Report
  • [Presentation] 差分方程式の不変量とその応用2019

    • Author(s)
      蛭子彰仁
    • Organizer
      近畿大学数学教室講演会
    • Related Report
      2018 Research-status Report
  • [Presentation] 差分方程式の不変量とその応用2019

    • Author(s)
      蛭子彰仁
    • Organizer
      アクセサリー・パラメーター研究会
    • Related Report
      2018 Research-status Report
  • [Presentation] 差分方程式の不変量と超幾何関数の変換公式2019

    • Author(s)
      蛭子彰仁
    • Organizer
      日本数学会2019年度年会
    • Related Report
      2018 Research-status Report
  • [Presentation] 超幾何関数の変換公式について2018

    • Author(s)
      蛭子彰仁
    • Organizer
      2018年度函数方程式論サマーセミナー
    • Related Report
      2018 Research-status Report
  • [Presentation] 差分方程式の不変量と超幾何関数の変換公式2018

    • Author(s)
      蛭子彰仁
    • Organizer
      第61回函数論シンポジウム
    • Related Report
      2018 Research-status Report
    • Invited
  • [Remarks] The Web Page of Akihito Ebisu

    • URL

      https://sites.google.com/site/akihitoebisu/home

    • Related Report
      2022 Annual Research Report 2021 Research-status Report 2020 Research-status Report 2019 Research-status Report 2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi