• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Stochastic analysis for interface models separating phases and its evllution

Research Project

Project/Area Number 18K13430
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionThe University of Tokyo (2022)
Waseda University (2018-2021)

Principal Investigator

YOKOYAMA Satoshi  東京大学, 大学院数理科学研究科, 特任研究員 (70643774)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords確率偏微分方程式 / 確率解析 / 確率微分方程式 / 確率論 / 平均曲率方程式 / 偏微分方程式
Outline of Final Research Achievements

The main subject of the study was a mathematical model that represents the time evolution of an equation with a stochastic element, noise, on the hypersurface that separates two materials with different properties. Ideally, the noise should be space-time white noise, which is considered physically natural, but in this study, the problem was captured with spatially correlated colored noise and the time evolution of the hypersurface driven by the noise was discussed. Specifically, a quasilinear second-order stochastic partial differential equation with multiplicative noise is derived as the equation satisfied by the signed distance function from the hypersurface. Due to technical difficulties arising from the poor regularity of the noise, the existence and uniqueness of local solutions are obtained, although conditions are required under which the coefficients on the colored noise are moderately transformed according to the value of the signed distance function above.

Academic Significance and Societal Importance of the Research Achievements

確率項が付加された双安定で均衡条件を満たす反応項を持つ反応拡散方程式で、低温状態にするような極限操作では反応項の影響が強くなり2相を分ける界面の運動が現れる。界面の形状の時間発展を議論する事は重要である。2次元の空間での体積保存型の確率アレンカーン方程式では適切な条件のもと極限操作によって界面の時間発展を表す具体的な方程式が導かれるという結果を得た。また、2次元の空間で適切な条件を課した色付きノイズの場合の界面の運動も議論できた。数学的に議論を進めるための技術的な仮定の元、できる限り自然と思われるノイズを導入し確率偏微分方程式としてモデル化し、界面の運動の結果を得たことは意義深い。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (7 results)

All 2020 2019 2018 Other

All Int'l Joint Research (1 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (4 results) (of which Int'l Joint Research: 1 results)

  • [Int'l Joint Research] ピサ大学(イタリア)

    • Related Report
      2020 Research-status Report
  • [Journal Article] A Stochastically Perturbed Mean Curvature Flow by Colored Noise2020

    • Author(s)
      Yokoyama Satoshi
    • Journal Title

      Journal of Theoretical Probability

      Volume: 34 Issue: 1 Pages: 214-240

    • DOI

      10.1007/s10959-019-00983-0

    • Related Report
      2020 Research-status Report 2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Sharp interface limit for stochastically perturbed mass conserving Allen?Cahn equation2019

    • Author(s)
      Funaki Tadahisa、Yokoyama Satoshi
    • Journal Title

      The Annals of Probability

      Volume: 47 Issue: 1 Pages: 560-612

    • DOI

      10.1214/18-aop1268

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Three different time stages in stochastic mass-conserving Allen-Cahn equation2019

    • Author(s)
      Satoshi Yokoyama
    • Organizer
      大規模相互作用系の確率解析
    • Related Report
      2019 Research-status Report
  • [Presentation] Three different time stages in stochastic mass-conserving Allen-Cahn equation2019

    • Author(s)
      Satoshi Yokoyama
    • Organizer
      One-day Symposium「Hydrodynamic limit and related topics」
    • Related Report
      2019 Research-status Report
  • [Presentation] Sharp interface limit for stochastically perturbed mass conserving Allen-Cahn equation2019

    • Author(s)
      Satoshi YOKOYAMA
    • Organizer
      Seminar Probabilites-Statistique-Controle, Ensta, ParisTech.
    • Related Report
      2018 Research-status Report
  • [Presentation] Sharp interface limit for stochastically perturbed mass conserving Allen-Cahn equation2018

    • Author(s)
      Satoshi YOKOYAMA
    • Organizer
      The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi