• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The study of differential symmetry breaking operators and minimal representations from an analytic point of view

Research Project

Project/Area Number 18K13432
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionRyukoku University

Principal Investigator

Kubo Toshihisa  龍谷大学, 経済学部, 准教授 (90647637)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords絡微分作用素 / 極小表現 / K-type構造 / 超幾何多項式 / Heun多項式 / 三重対角行列式 / Cayley continuant / 関数等式 / ホイン多項式 / Huen多項式 / K-type formula / tridiagonal determinant / palindromic property / factorial property / Kable作用素 / 解空間のKタイプ構造 / Sylvester行列式 / 直行多項式系 / 微分対称性破れ作用素 / 補系列表現 / 特殊関数 / 直交多項式 / 対称性破れ作用素
Outline of Final Research Achievements

During the period of research, I mainly studied the K-type structure of the solution space Sol(□(s,3)) of the Heisenberg ultrahyperbolic operator □(s,3) of type A2. There are two main results. One of them is the determination of the K-type structure of Sol(□(s,3)). This result closes a case of the problem that Kable studied before. The other is the the following three discoveries on sequences of polynomials: (1) the discovery of sequences of polynomials that has local Huen functions as their generating functions of sinh type and cosh type, (2) the discovery of the special values of the tridiagonal determinants, and (3) the discovery of the functional equation (palindromic property) of sequences of polynomials. I will use the experience and knowledge obtained in this study for my future research.

Academic Significance and Societal Importance of the Research Achievements

本研究成果の主な学術的意義として,Kableの問題の部分的解決が挙げられる.An型ハイゼンベルグ超双極型微分作用素□(s,n+1)の解空間Sol(□(s,n+1))のK-type構造はKableによって調べられているが,その構造を完全に記述するまでには至っていない.本研究では解空間Sol(□(s,3))のK-type構造を完全に決定することにより,n=2の場合にこの問題を解決することができた.さらに本研究によって「多項式列の関数等式」という全く新しい性質を発見することにも成功した.これは古典的によく知られた三重対角行列式に対しても新たな性質を見出すものである.

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (17 results)

All 2022 2021 2020 2019 Other

All Int'l Joint Research (1 results) Presentation (12 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results) Remarks (4 results)

  • [Int'l Joint Research] Aarhus University(デンマーク)

    • Related Report
      2018 Research-status Report
  • [Presentation] On the classification of the K-type formulas for the Heisenberg ultrahyperbolic equation2022

    • Author(s)
      Toshihisa Kubo
    • Organizer
      Representation Theory Workshop 2021
    • Related Report
      2021 Research-status Report
  • [Presentation] On the classification of the K-type formulas for the Heisenberg ultrahyperbolic equation2021

    • Author(s)
      Toshihisa Kubo
    • Organizer
      Lie Group and Representation Theory Seminar
    • Related Report
      2021 Research-status Report
  • [Presentation] Palindromic property of a sequence of polynomials2021

    • Author(s)
      Toshihisa Kubo
    • Organizer
      Representation Theory Workshop
    • Related Report
      2020 Research-status Report
  • [Presentation] Classification of the K-type formulas for a certain second order differential equation2021

    • Author(s)
      Toshihisa Kubo
    • Organizer
      Langlands and Harmonic Analysis
    • Related Report
      2020 Research-status Report
  • [Presentation] Palindromic property of Cayley continuants {Cay_k(x;n)}2021

    • Author(s)
      Toshihisa Kubo
    • Organizer
      MSJ Spring Meeting 2021
    • Related Report
      2020 Research-status Report
  • [Presentation] On the zeros of the Sylvester determinant and Jacobi weight function2020

    • Author(s)
      Toshihisa Kubo
    • Organizer
      Representation theory workshop 2020
    • Related Report
      2019 Research-status Report
  • [Presentation] A Peter-Weyl type decomposition theorem for intertwining differential operators and its application2020

    • Author(s)
      Toshihisa Kubo
    • Organizer
      Seminar in Aarhus University, Denmark
    • Related Report
      2019 Research-status Report
  • [Presentation] The K-type formulas for Kable's differential operators of type A_3 and Heun polynomials2020

    • Author(s)
      Toshihisa Kubo
    • Organizer
      MSJ Spring Meeting 2020
    • Related Report
      2019 Research-status Report
  • [Presentation] Kable's Heisenberg ultrahyperbolic operator and hypergeometric polynomials2019

    • Author(s)
      Toshihisa Kubo
    • Organizer
      Second International Conference on Applications of Mathematics to Nonlinear Sciences (AMNS-2019), Nepal
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Factorization formulas for certain tridiagonal determinants2019

    • Author(s)
      Toshihisa Kubo
    • Organizer
      Ryukoku seminar
    • Related Report
      2019 Research-status Report
  • [Presentation] Sylvester-type determinant formulas and Huen polynomials2019

    • Author(s)
      Toshihisa Kubo
    • Organizer
      Seminar in Kyushu University
    • Related Report
      2019 Research-status Report
  • [Presentation] On the Peter-Weyl type decomposition theorem for the space of K-finite solutions to intertwining differential operators2019

    • Author(s)
      久保 利久
    • Organizer
      日本数学会2019年度年会
    • Related Report
      2018 Research-status Report
  • [Remarks] 個人ホームページ

    • URL

      https://sites.google.com/site/toskubo00/

    • Related Report
      2022 Annual Research Report
  • [Remarks] 個人Webページ

    • URL

      https://sites.google.com/site/toskubo00/home2

    • Related Report
      2021 Research-status Report 2019 Research-status Report
  • [Remarks] 個人Webページ

    • URL

      https://sites.google.com/site/toskubo00/

    • Related Report
      2020 Research-status Report
  • [Remarks]

    • URL

      https://sites.google.com/site/toskubo00/

    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi