• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Uniform computability and constructive derivability between existence sentences

Research Project

Project/Area Number 18K13450
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12030:Basic mathematics-related
Research InstitutionMeiji University (2019-2020)
Waseda University (2018)

Principal Investigator

Fujiwara Makoto  明治大学, 研究・知財戦略機構(生田), 研究推進員(客員研究員) (20779095)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords計算可能数学 / 構成的逆数学 / 逆数学 / 直観主義算術 / 存在定理 / 相対的一様計算可能性 / 構成的数学 / 一様計算可能性 / 直観主義論理
Outline of Final Research Achievements

Most of mathematical theorems have a form that "for any X satisfying some condition, there exists some solution Y for X". Such theorems are called "existence theorems". In computable mathematics, their interrelation has been studied via Weihrauch reducibility.
In this project, we formalized the primitive recursive version of Weihrauch reducibility in finite-type arithmetic and showed that for any existence sentences P and Q of some syntactical form, P is primitive recursively Weihrauch reducibile to Q verifiably in a classical finite-type arithmetic T if and only if P is derivable from Q in the semi-intuitionistic counterpart iT of T with a proof of the standard structure. Then we established that this meta-theorem is applicable to many existence theorems by providing several concrete examples. In addition, we showed that the syntactical restriction in our meta-theorem cannot be avoided by providing a counterexample.

Academic Significance and Societal Importance of the Research Achievements

数学の定理の多くは「条件を満たす全てのXに対して,条件を満たす解Yが存在する」という形をしており,そのような何かしらの解の存在を主張する定理は「存在定理」と呼ばれる.存在定理同士の強さの関係を調べる研究が,計算可能数学や構成的逆数学のそれぞれの文脈において行われてきた.
本研究では,計算可能数学における存在定理の間の還元可能性を,直観主義論理に基づいた有限型算術における導出可能性を用いて部分的に特徴付けた.これにより.これまでそれぞれ独立に研究が進められてきた計算可能数学と構成的逆数学の直接的な関連性が一部明らかになった.

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (6 results)

All 2021 2020 2019 2018

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (3 results) (of which Int'l Joint Research: 3 results,  Invited: 1 results)

  • [Journal Article] Weihrauch and constructive reducibility between existence statements2021

    • Author(s)
      Makoto Fujiwara
    • Journal Title

      Computability

      Volume: 10 Issue: 1 Pages: 17-30

    • DOI

      10.3233/com-190278

    • Related Report
      2020 Annual Research Report 2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Parallelizations in Weihrauch reducibility and constructive reverse mathematics2020

    • Author(s)
      Makoto Fujiwara
    • Journal Title

      Lecture Notes in Computer Science

      Volume: 12098 Pages: 38-49

    • DOI

      10.1007/978-3-030-51466-2_4

    • ISBN
      9783030514655, 9783030514662
    • Related Report
      2020 Annual Research Report 2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Equivalence of bar induction and bar recursion for continuous functions with continuous moduli2019

    • Author(s)
      Makoto Fujiwara and Tatsuji Kawai
    • Journal Title

      Annals of Pure and Applied Logic

      Volume: 印刷中 Issue: 8 Pages: 867-890

    • DOI

      10.1016/j.apal.2019.04.001

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Parallelizations in Weihrauch reducibility and constructive reverse mathematics2020

    • Author(s)
      Makoto Fujiwara
    • Organizer
      Computability in Europe 2020: Beyond the horizon of computability
    • Related Report
      2020 Annual Research Report 2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Weihrauch and constructive reducibility between existence statements2020

    • Author(s)
      Makoto Fujiwara
    • Organizer
      Seventeenth International Conference on Computability and Complexity in Analysis
    • Related Report
      2020 Annual Research Report 2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Bar induction and bar recursion with respect to continuity on Baire space2018

    • Author(s)
      Makoto Fujiwara
    • Organizer
      Workshop on Computability Theory and Foundations of Mathematics 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi