• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Real-time flood prediction of urban rivers with artificial intelligence

Research Project

Project/Area Number 18K13843
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 22040:Hydroengineering-related
Research InstitutionResearch and Development Center, Nippon Koei Co., Ltd.

Principal Investigator

HITOKOTO Masayuki  日本工営株式会社中央研究所, 先端研究センター, 課長 (40463559)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords洪水予測 / 河川水位予測 / ダム流入量予測 / 都市河川 / 機械学習 / 深層学習 / 人工知能 / 氾濫予測 / ニューラルネットワーク / XRAIN
Outline of Final Research Achievements

Using high-resolution rainfall data and deep learning, we constructed a rapid and accurate river water level prediction model for small and medium-sized urban rivers, which had been considered difficult to predict, and demonstrated it in the Tsurumi River. We also constructed a model that can directly read high-resolution rainfall radar data using a convolutional neural network (CNN), and demonstrated it in several river basins. In addition, we have improved the model by hybridizing it with physical models, applying explainable AI (XAI), and improving its applicability to inexperienced events through data augmentation. In the final year of the project, a review paper on runoff analysis using deep learning was published. In addition, as a development from the main theme of this research, we conducted a basic study of inundation area prediction technology for inundation by river water using artificial intelligence.

Academic Significance and Societal Importance of the Research Achievements

学術的意義は次の通りである。①都市河川における人工知能を用いたリアルタイム洪水予測手法の適用性の提示。②CNNの適用によるレーダ雨量の活用、データ拡張による大規模洪水への適用性の向上、不定流モデルとのハイブリッドによる縦断的な水位予測、深層学習に対するXAIの適用による説明性の向上など、新しい手法の開発。③レビュー論文の投稿による学術コミュニティへの知見の共有。
社会的意義は、気候変動による水害リスク増大への適応策に資する技術的貢献として、次の通りである。①洪水予測やダム運用の高度化に直結する技術開発・実証。②開発した水位予測と連携した、将来的なリアルタイム氾濫予測に向けた基礎技術の開発。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (13 results)

All 2024 2023 2022 2020 2019

All Journal Article (8 results) (of which Peer Reviewed: 8 results,  Open Access: 3 results) Presentation (4 results) (of which Int'l Joint Research: 2 results) Book (1 results)

  • [Journal Article] 深層学習を用いた流出解析の技術動向およびモデル構築手順のレビュー(掲載予定)2024

    • Author(s)
      一言正之、荒木健、箱石健太、遠藤優斗
    • Journal Title

      河川技術論文集 第30巻

      Volume: 30

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Accuracy Validation of Low Water Inflow Considering Snowmelt Season at 4 KINUGAWA upper Dams Using Deep Learning2023

    • Author(s)
      箱石 健太、一言 正之、川上 拓、猪狩 彬寛、善光寺 慎悟、原 俊彦、真柄 圭
    • Journal Title

      Artificial Intelligence and Data Science

      Volume: 4 Issue: 3 Pages: 547-552

    • DOI

      10.11532/jsceiii.4.3_547

    • ISSN
      2435-9262
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Consideration of XAI in Inflow Prediction Model Using Convolutional Neural Network2023

    • Author(s)
      箱石 健太、一言 正之、善光寺 慎悟、西口 亮太
    • Journal Title

      Artificial Intelligence and Data Science

      Volume: 4 Issue: 3 Pages: 539-546

    • DOI

      10.11532/jsceiii.4.3_539

    • ISSN
      2435-9262
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Novel Data Augmentation Method for Rainfall-runoff Calculation by Machine Learning2023

    • Author(s)
      Hitokoto Masayuki、Araki Takeru、Hakoishi Kenta、Endo Yuto
    • Journal Title

      Proceedings of the 40th IAHR World Congress

      Volume: 40 Pages: 3331-3338

    • DOI

      10.3850/978-90-833476-1-5_iahr40wc-p1430-cd

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] CNNによる流出解析における降雨の時空間分布の影響検討(搭載決定)2023

    • Author(s)
      西口 亮太・善光寺 慎悟・高木 康行・一言 正之
    • Journal Title

      河川技術論文集

      Volume: 29

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] EVALUATION OF APPLICABILITY OF DATA AUGMENTATION METHOD FOR DAM INFLOW PREDICTION USING DEEP LEARNING2022

    • Author(s)
      HITOKOTO Masayuki、ARAKI Takeru、HAKOISHI Kenta、ENDO Yuto
    • Journal Title

      Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering)

      Volume: 78 Issue: 2 Pages: I_175-I_180

    • DOI

      10.2208/jscejhe.78.2_I_175

    • ISSN
      2185-467X
    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] 深層学習を用いたダム流入量予測における学習データ拡張方法の提案 -未経験規模の出水に対する適用性の向上-(登載決定)2022

    • Author(s)
      一言正之、荒木健、箱石健太、遠藤優斗
    • Journal Title

      河川技術論文集

      Volume: 28

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] RIVER WATER LEVEL PREDICTION USING STACKING2020

    • Author(s)
      箱石 健太、荒木 健、一言 正之
    • Journal Title

      Intelligence, Informatics and Infrastructure

      Volume: 1 Issue: J1 Pages: 453-458

    • DOI

      10.11532/jsceiii.1.J1_453

    • NAID

      130007940757

    • ISSN
      2435-9262
    • Year and Date
      2020-11-11
    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Neural Networksに基づく氾濫浸水深予測モデルの構築2024

    • Author(s)
      中山龍也、羽物裕人、一言正之、樫山和男
    • Organizer
      第51回土木学会関東支部技術研究発表会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 次元圧縮を用いた深層学習による洪水氾濫域予測モデルの構築と評価2024

    • Author(s)
      中山龍也、羽物裕人、一言正之、樫山和男
    • Organizer
      土木学会全国大会 第79回年次学術講演会
    • Related Report
      2023 Annual Research Report
  • [Presentation] New data augmentation method for rainfall-runoff calculation using machine learning and examining it's applicability2024

    • Author(s)
      Hitokoto Masayuki、Araki Takeru
    • Organizer
      15th Hydroinformatics International Conference
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] River-stage prediction for urban small rivers with deep learning model by using x-band radar rainfall2019

    • Author(s)
      Masayuki Hitokoto, Masaaki Sakuraba
    • Organizer
      EGU General Assembly 2019
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Book] AI×防災2022

    • Author(s)
      古田 均、北原 武嗣、野村 泰稔、宮本 崇、一言 正之、伊藤 真一、広兼 道幸、高橋 亨輔
    • Total Pages
      209
    • Publisher
      電気書院
    • ISBN
      4485301192
    • Related Report
      2022 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi