• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Challenge to automatic classification between Parkinson's disease and atypical Parkinson's syndrome by artificial intelligence

Research Project

Project/Area Number 18K15565
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionFujita Health University (2021)
Teikyo University (2018-2020)

Principal Investigator

Shiiba Takuro  藤田医科大学, 医療科学部, 准教授 (30759501)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Keywordsパーキンソン病 / 人工知能 / 自動分類 / 非定型パーキンソン症候群 / ドパミントランスポーター / SPECT / 機械学習 / 特徴量 / 画像特徴量 / パーキンソン症候群 / 非典型的パーキンソン症候群
Outline of Final Research Achievements

This study aimed to focus on the image features of dopamine transporter (DAT) SPECT, a biofunctional imaging technique, and to develop the next-generation imaging diagnosis method, an automatic classification system for Parkinson's disease (PD) and atypical Parkinson syndrome (APS), by introducing machine learning. However, the organization of APS cases planned initially did not proceed due to the spread of the new coronavirus infection.
Therefore, the objectives were set as constructing a radiomics signature and developing an automated classification system for PD and healthy subjects. As a result of the research, a highly accurate automatic classification system and a radiomics signature for PD was constructed. The results are expected to be applied to APS.

Academic Significance and Societal Importance of the Research Achievements

本研究では、パーキンソン病の高精度な自動分類システムの構築と新たな画像バイオマーカを提案することができた。本研究で構築した自動分類システムの使用によって従来のパーキンソン病の画像診断の正確さを向上させる可能性があり、今後パーキンソン病と非定型パーキンソン症候群への応用が期待できる。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (12 results)

All 2021 2020 2019 2018

All Journal Article (2 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (9 results) (of which Int'l Joint Research: 3 results) Funded Workshop (1 results)

  • [Journal Article] 7. Applications of Machine Learning on Nuclear Medicine2021

    • Author(s)
      Shiiba Takuro
    • Journal Title

      Japanese Journal of Radiological Technology

      Volume: 77 Issue: 2 Pages: 193-199

    • DOI

      10.6009/jjrt.2021_JSRT_77.2.193

    • NAID

      130007988398

    • ISSN
      0369-4305, 1881-4883
    • Related Report
      2021 Annual Research Report 2020 Research-status Report
  • [Journal Article] Improvement of classification performance of Parkinson's disease using shape features for machine learning on dopamine transporter single photon emission computed tomography2020

    • Author(s)
      Shiiba Takuro、Arimura Yuki、Nagano Miku、Takahashi Tenma、Takaki Akihiro
    • Journal Title

      PLOS ONE

      Volume: 15 Issue: 1 Pages: e0228289-e0228289

    • DOI

      10.1371/journal.pone.0228289

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] ドパミントランスポータSPECTにおける脳テンプレートを用いた3次元radiomics特徴量の有用性2021

    • Author(s)
      伊藤柊二,椎葉拓郎,高野一輝
    • Organizer
      第41回日本核医学技術学会総会学術大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] ドパミントランスポータSPECT画像への人工知能応用の可能性2021

    • Author(s)
      椎葉拓郎
    • Organizer
      第49回日本放射線技術学会秋季学術大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] Feasibility of Applying Super-Resolution Techniques Using Deep Learning to SPECT Images2021

    • Author(s)
      T. Shiiba, M. Harada, I. Kaito
    • Organizer
      European congress of radiology 2021
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] ドパミントランスポータSPECT画像特徴量を用いたパーキンソン病の運動機能予後予測性能改善の可能性2020

    • Author(s)
      椎葉 拓郎 , 高木 昭浩
    • Organizer
      第76回日本放射線技術学会
    • Related Report
      2020 Research-status Report
  • [Presentation] Development of classification method using automatic shape extraction for dopamine transporter SPECT image2019

    • Author(s)
      椎葉拓郎,中村優花,中村太一,高木昭浩
    • Organizer
      第75回日本放射線技術学会総会学術大会
    • Related Report
      2019 Research-status Report
  • [Presentation] Comparison of diagnostic performance of deep convolutional neural network using fine-tuning and feature extraction on dopamine transporter single photon emission tomography images2019

    • Author(s)
      Takuro Shiiba, Akihiro Takaki
    • Organizer
      SNMMI2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Usefulness of Classification of Amyloid PET Images by Use of Textural Features2018

    • Author(s)
      Shiiba T., Takahashi T., Nagano M., Takaki A.
    • Organizer
      European Association of Nuclear Medicine
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] ドパミントランスポータSPECT画像の機械学習を用いたグレード分類の可能性2018

    • Author(s)
      椎葉拓郎, 有村勇輝, 今村宏次郎, 高橋典馬, 永野未来, 貞苅将司, 高木昭浩
    • Organizer
      第74回日本放射線技術学会総会学術大会
    • Related Report
      2018 Research-status Report
  • [Presentation] ドパミントランスポータSPECT画像の線条体自動抽出方の開発2018

    • Author(s)
      中村太一、椎葉拓郎、中村優花、高木昭浩
    • Organizer
      第13回九州放射線医療技術学術大会
    • Related Report
      2018 Research-status Report
  • [Funded Workshop] European Association of Nuclear Medicine (EANM) 20182018

    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi