Development of a methodology for predicting radiation therapy prognosis based on a radiomics with variability of patients in the treatment
Project/Area Number |
18K15625
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 52040:Radiological sciences-related
|
Research Institution | Hokkaido University (2020-2021) The University of Tokyo (2018-2019) |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | Radiomics / 予後予測 / 放射線治療 / 患者変動 / 医学物理学 / 食道扁平上皮がん / CBCT画像 / コックス回帰 / リスクスコア / ログランク検定 / DIR / 神経膠腫 / 肺がん転移性脳腫瘍 / 機械学習 / 予後因子予測 |
Outline of Final Research Achievements |
The purpose of the study was to develop a system for predicting radiation therapy prognosis based on a radiomics with patient’s variability in the treatment. Radiomic features with patient’s variability were extracted from multi-modal medical images acquired in and before the radiation therapy. We developed system for predicting radiation therapy prognosis and factors related to the prognosis using the radiomic features with patient’s variability. We have been suggested that the radiomics-based system with the patient’s variability would be feasible for predicting the radiation therapy prognosis.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究において治療時の患者変動を含んだRadiomics特徴量と放射線治療予後との関係を学習させてモデリングすることにより治療時患者変動を考慮した上で予後が予測できる可能性を示した.また,本研究で開発したシステムを用いて予測した予後の結果を治療計画時や治療中にフィードバックすることで患者個々の変動や特徴に最適化されたオーダーメイド放射線治療の実現が期待できる.必要なデータは放射線治療を行なう上で取得される医用画像と予後情報のみであるため,提案したシステムで構築したモデルを用いれば他施設でも簡便に予後を予測することが可能で臨床的な意義が高い.
|
Report
(5 results)
Research Products
(29 results)
-
[Journal Article] Training of deep cross‐modality conversion models with a small dataset, and their application in megavoltage CT to kilovoltage CT conversion2022
Author(s)
Ozaki S, Kaji S, Nawa K, Imae T, Aoki A, Nakamoto T, Ohta T, Nozawa Y, Yamashita H, Haga A, Nakagawa K
-
Journal Title
Medical Physics
Volume: -
Issue: 6
Pages: 1-14
DOI
Related Report
Peer Reviewed / Open Access
-
[Journal Article] Improvement in Image Quality of CBCT during Treatment by Cycle Generative Adversarial Network2020
Author(s)
今江 禄一, 鍛冶 静雄, 木田 智士, 松田 佳奈子, 竹中 重治, 青木 淳, 仲本 宗泰, 尾崎 翔, 名和 要武, 山下 英臣, 中川 恵一, 阿部 修.
-
Journal Title
Japanese Journal of Radiological Technology
Volume: 76
Issue: 11
Pages: 1173-1184
DOI
NAID
ISSN
0369-4305, 1881-4883
Related Report
Peer Reviewed / Open Access
-
-
[Journal Article] Fast Statistical Iterative Reconstruction for Mega-voltage Computed Tomography2020
Author(s)
S. Ozaki, A. Haga, E. Chao, C. Maurer, K. Nawa, T. Ohta, T. Nakamoto, Y. Nozawa, T. Magome, M. Nakano, K. Nakagawa
-
Journal Title
The Journal of Medical Investigation
Volume: 67
Issue: 1.2
Pages: 30-39
DOI
NAID
ISSN
1343-1420, 1349-6867
Related Report
Peer Reviewed / Open Access / Int'l Joint Research
-
-
[Journal Article] Radiomics analysis for glioma malignancy evaluation using diffusion kurtosis and tensor imaging2019
Author(s)
Takahashi S, Takahashi W, Tanaka S, Haga A, Nakamoto T, Suzuki Y, Mukasa A, Takayanagi S, Kitagawa Y, Hana T, Nejo T, Nomura M, Nakagawa K, Saito N
-
Journal Title
International Journal of Radiation Oncology Biology Physics
Volume: 105
Issue: 4
Pages: 784-791
DOI
Related Report
Peer Reviewed
-
-
-
-
-
[Presentation] Imaging biomarker analysis for grading malignant gliomas based on a few conventional magnetic resonance imaging sequences2020
Author(s)
Nakamoto T, Takahashi W, Haga A, Takahashi S, Kiryu S, Nawa K, Ohta T, Ozaki S, Nozawa Y, Tanaka S, Mukasa A, Nakagawa K
Organizer
2020 Joint AAPM COMP Meeting
Related Report
Int'l Joint Research
-
-
-
-
-
-
[Presentation] Visualization of judgment basis of CNN to grading glioma2019
Author(s)
Takahashi S, Tanaka S, Takahashi M, Yamazawa E, Hana T, Kitagawa Y, Takayanagi S, Takahashi W, Nakamoto T, Haga S, Hamamoto R, Saito N
Organizer
24th Annual meeting of Society for NeuroOncology
Related Report
Int'l Joint Research
-
[Presentation] A novel radiomics model differentiating chordoma and chondrosarcoma2019
Author(s)
Yamazawa E, Takahashi S, Tanaka S, Takahashi W, Nakamoto T, Takayanagi S, Kitagawa Y, Hana T, Koike T, Kushihara Y, Shin Masahiro, Saito N
Organizer
24th Annual meeting of Society for NeuroOncology
Related Report
Int'l Joint Research
-
-
-
-
[Presentation] Radiomics analysis for detection of IDH mutation of glioma using diffusion tensor and kurtosis images2018
Author(s)
Takahashi S, Takahashi W, Tanaka S, Haga A, Nakamoto T, Mukasa A, Takayanagi S, Suzuki Y, Koike T, Kitagawa Y, Hana T, Nejo T, Nomura M, Saito N
Organizer
Society for Neuro-Oncology 2018 Annual Meeting
Related Report
Int'l Joint Research
-
[Presentation] A feasibility study for classifying malignant glioma grades based on a radiomics analysis2018
Author(s)
Nakamoto T, Takahashi W, Haga A, Takahashi S, Nawa K, Ohta T, Ozaki S, Nozawa Y, Tanaka S, Mukasa A, Nakagawa K
Organizer
日本放射線腫瘍学会第31回学術大会
Related Report
-
-
[Presentation] 拡散画像のRadiomics解析と機械学習モデルによるIDH-1遺伝子変異の同定2018
Author(s)
高橋慧, 高橋渉, 田中将太, 芳賀昭弘, 武笠晃丈, 仲本宗泰, 鈴木雄一, 小池司, 北川陽介, 花大洵, 根城尭英, 野村昌志, 高柳俊作, 斎藤延人
Organizer
第19回日本分子脳神経外科学会
Related Report
-
[Presentation] 拡散画像を使ったconvolutional neural networkによる神経膠腫の悪性度診断2018
Author(s)
高橋慧, 田中将太, 高橋渉, 仲本宗泰, 鈴木雄一, 北川陽介, 花大洵, 根城尭英, 野村昌志, 高柳俊作, 斎藤延人
Organizer
日本脳神経外科学会第77回学術総会
Related Report
-
-
-