• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Unified formulation and generalization performance of local-feature learning

Research Project

Project/Area Number 18K18001
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 60010:Theory of informatics-related
Research InstitutionKyushu University

Principal Investigator

Suehiro Daiki  九州大学, システム情報科学研究院, 助教 (20786967)

Project Period (FY) 2018-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Keywords局所パターン / 機械学習 / 汎化性能保証 / shapelet / マルチインスタンス学習 / 汎化性能 / Shapelet / 時系列分類 / 統計的学習理論 / 局所特徴 / 時系列分析 / 画像認識
Outline of Final Research Achievements

The main results are as follows:
(1)We proposed a general formulation of the local-feature-based learning problem by using Multiple-Instance Learning framework. (2)We showed the theoretical generalization performance of the local-feature-based hypothesis class. We applied this theory to Shapelet Learning, which is a popular task in the time-series domain, and we gave the first generalization bound of shapelet-based hypothesis class. (3)We proposed an efficient algorithm to solve the learning problem. (4)We demonstrated that our algorithm effectively works in practice.

Academic Significance and Societal Importance of the Research Achievements

本研究は,時系列分類問題におけるShapelet学習のような,局所パターン学習問題と,マルチインスタンス学習問題の関連性を世界で初めて示した.従来各ドメインで独立に発展してきた様々な局所パターン学習問題に対し,統一的な定式化,汎化性能保証,解法を与えたことは,機械学習分野に大きな貢献を与えたと言える.また,本研究の骨子となった「マルチインスタンス学習の枠組みに基づく学習問題の一般化」は,局所パターン学習問題に限らない,様々な学習問題に幅広く展開可能であり,新たな研究分野の開拓に期待できる.

Report

(3 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • Research Products

    (13 results)

All 2020 2019 2018

All Journal Article (6 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 5 results,  Open Access: 2 results) Presentation (7 results)

  • [Journal Article] Theory and Algorithms for Shapelet-based Multiple-Instance Learning2020

    • Author(s)
      Daiki Suehiro, Kohei Hatano, Eiji Takimoto, Shuji Yamamoto, Kenichi Bannai, Akiko Takeda
    • Journal Title

      Neural Computation

      Volume: -

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Adaptive Aggregation of Arbitrary Online Trackers with a Regret Bound2020

    • Author(s)
      Heon Song, Daiki Suehiro, Seiichi Uchida
    • Journal Title

      Proceedings of IEEE Winter Conference on Applications of Computer Vision

      Volume: - Pages: 681-689

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Optimal Rejection Function Meets Character Recognition Tasks2019

    • Author(s)
      Xiaotong Ji, Yuchen Zheng, Daiki Suehiro, Seiichi Uchida
    • Journal Title

      Proceedings of Asian Conference on Pattern Recognition

      Volume: - Pages: 169-183

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] RankSVM for Offline Signature Verification2019

    • Author(s)
      Yan Zheng, Yuchen Zheng, Wataru Ohyama, Daiki Suehiro, Seiichi Uchida
    • Journal Title

      Proceedings of International Conference on Document Analysis and Recognition

      Volume: - Pages: 928-933

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Logo Design Analysis by Ranking2019

    • Author(s)
      Takuro Karamatsu, Daiki Suehiro, Seiichi Uchida
    • Journal Title

      Proceedings of International Conference on Document Analysis and Recognition

      Volume: - Pages: 1482-1487

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Multiple-Instance Learning by Boosting Infinitely Many Shapelet-based Classifiers2018

    • Author(s)
      Daiki Suehiro, Kohei Hatano, Eiji Takimoto, Shuji Yamamoto, Kenichi Bannai, Akiko Takeda
    • Journal Title

      arXiv preprint arXiv:1811.08084

      Volume: arXiv:1811.08084 Pages: 1-20

    • Related Report
      2018 Research-status Report
    • Open Access
  • [Presentation] マルチインスタンス学習への再定式化に基づく理論的汎化誤差導出2019

    • Author(s)
      末廣 大貴
    • Organizer
      第22回情報論的学習理論ワークショップ
    • Related Report
      2019 Annual Research Report
  • [Presentation] Shapeletに基づくマルチインスタンス学習2019

    • Author(s)
      末廣 大貴,畑埜 晃平,瀧本 英二,山本 修司,坂内 健一,武田 朗子
    • Organizer
      情報論的学習理論と機械学習研究会(IBISML)
    • Related Report
      2019 Annual Research Report
  • [Presentation] オンラインエキスパート選択問題としての適応的学習率調整2019

    • Author(s)
      満尾 成亮, 末廣 大貴, 内田 誠一
    • Organizer
      画像の認識・理解シンポジウム(MIRU)
    • Related Report
      2019 Annual Research Report
  • [Presentation] オンライントラッカの統合について2019

    • Author(s)
      ソン ホン, 末廣 大貴, 内田 誠一
    • Organizer
      画像の認識・理解シンポジウム(MIRU)
    • Related Report
      2019 Annual Research Report
  • [Presentation] 弱教師学習問題における最適局所特徴抽出および樹状突起スパイン検出への応用2019

    • Author(s)
      八尋俊希,末廣大貴,本館利佳,鈴木利治,内田誠一
    • Organizer
      医用画像研究会
    • Related Report
      2018 Research-status Report
  • [Presentation] Shapelet-based Multiple-Instance Learning2019

    • Author(s)
      Daiki Suehiro, Kohei Hatano, Eiji Takimoto, Shuji Yamamoto, Kenichi Bannai, Akiko Takeda
    • Organizer
      情報論的学習理論と機械学習研究会(IBISML研究会)
    • Related Report
      2018 Research-status Report
  • [Presentation] 投手の打ちづらさとは何か ~ 機械学習に基づく投球印象解析 ~2018

    • Author(s)
      角淳之介,末廣大貴,加藤貴昭,内田誠一
    • Organizer
      スポーツ情報処理時限研究会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi