• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Statistical inference for high-dimensional data: spiking and sparsity

Research Project

Project/Area Number 18K18015
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 60030:Statistical science-related
Research InstitutionTokyo University of Science

Principal Investigator

Ishii Aki  東京理科大学, 創域理工学部情報計算科学科, 講師 (20801161)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords高次元データ / 高次元小標本 / 強スパイク固有値 / 高次元統計的推測 / 高次元統計解析 / 強スパイク固有値モデル / 高次元データ解析 / 固有値推定 / 強スパイク構造 / 判別分析 / 幾何学的表現 / スパイク構造 / 高次元二標本検定 / 高次元多標本問題 / 高次元二標本問題 / スパース性
Outline of Final Research Achievements

We have mainly developed new theories and methodologies for statistical inference for high-dimensional independent samples. Based on the high-dimensional phenomenon that eigenvalues of high-dimensional covariance matrices of high-dimension, low-sample-size data, such as genomic data, are strongly spiked due to correlation among genes, we developed new methods for testing high-dimensional mean vectors, equality tests for high-dimensional covariance matrices, tests for high-dimensional covariance structures, and high-dimensional discriminant analysis. We also theoretically showed that the proposed procedures guarantee high accuracy.

Academic Significance and Societal Importance of the Research Achievements

本研究は、高次元統計解析という、高次元データに対して高精度・低計算コスト・高い汎用性をもつ高次元データに対する新しい理論・方法論をもとに成果を挙げている。理論的に高い精度保証を与える手法を提案するだけでなく、実データをもとに応用例・解析例も多く与えた。上記から、理論研究・応用研究において課題となる点である、実データにおける汎用性や理論的な精度保証を解決する成果を挙げており、学術的意義がある。対象としているデータがゲノム等の高次元データであり、汎用性の高さから医療などの分野への応用も多く考えられ、社会的意義がある。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (42 results)

All 2024 2023 2022 2021 2020 2019 2018

All Journal Article (11 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 10 results,  Open Access: 8 results) Presentation (31 results) (of which Int'l Joint Research: 12 results,  Invited: 15 results)

  • [Journal Article] High-dimensional Statistical Analysis and Its Application to an ALMA Map of NGC 2532024

    • Author(s)
      Takeuchi Tsutomu T.、Yata Kazuyoshi、Egashira Kento、Aoshima Makoto、Ishii Aki、Cooray Suchetha、Nakanishi Kouichiro、Kohno Kotaro、Kono Kai T.
    • Journal Title

      The Astrophysical Journal Supplement Series

      Volume: 271 Issue: 2 Pages: 44-44

    • DOI

      10.3847/1538-4365/ad2517

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] 強スパイク固有値モデルにおける統計的推測2024

    • Author(s)
      石井 晶
    • Journal Title

      日本統計学会誌

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Geometric classifiers for high-dimensional noisy data2022

    • Author(s)
      Ishii Aki、Yata Kazuyoshi、Aoshima Makoto
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 188 Pages: 104850-104850

    • DOI

      10.1016/j.jmva.2021.104850

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] 論説:高次元小標本における統計的仮説検定2021

    • Author(s)
      青嶋 誠、石井 晶、矢田和善
    • Journal Title

      日本数学会邦文誌「数学」

      Volume: 73 Pages: 360-379

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] High-dimensional Two-sample Test Procedures under the Strongly Spiked Eigenvalue Model2020

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Journal Title

      Ouyou toukeigaku

      Volume: 49 Issue: 3 Pages: 109-125

    • DOI

      10.5023/jappstat.49.109

    • NAID

      130008022515

    • ISSN
      0285-0370, 1883-8081
    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Tests for high-dimensional covariance structures under the non-strongly spiked eigenvalue model2020

    • Author(s)
      Ishii Aki, Yata Kazuyoshi, Aoshima Makoto
    • Journal Title

      数理解析研究所講究録

      Volume: 2157 Pages: 21-30

    • NAID

      120006956689

    • Related Report
      2020 Research-status Report
  • [Journal Article] A classifier under the strongly spiked eigenvalue model in high-dimension, low-sample-size context2020

    • Author(s)
      Ishii Aki
    • Journal Title

      Communications in Statistics - Theory and Methods

      Volume: 49 Issue: 7 Pages: 1561-1577

    • DOI

      10.1080/03610926.2018.1528365

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Inference on high-dimensional mean vectors under the strongly spiked eigenvalue model2019

    • Author(s)
      A. ishii, K. Yata, M. Aoshima
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 印刷中 Issue: 1 Pages: 105-128

    • DOI

      10.1007/s42081-018-0029-z

    • Related Report
      2019 Research-status Report 2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Equality tests of high-dimensional covariance matrices under the strongly spiked eigenvalue model2019

    • Author(s)
      Ishii Aki, Yata Kazuyoshi, Aoshima Makoto
    • Journal Title

      Journal of Statistical Planning and Inference

      Volume: 202 Pages: 99-111

    • DOI

      10.1016/j.jspi.2019.02.002

    • NAID

      120007133560

    • Related Report
      2019 Research-status Report 2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A quadratic classifier for high-dimension, low-sample-size data under the strongly spiked eigenvalue model2019

    • Author(s)
      Ishii Aki, Yata Kazuyoshi, Aoshima Makoto
    • Journal Title

      Springer Proceedings in Mathematics and Statistics

      Volume: 294 Pages: 131-142

    • DOI

      10.1007/978-3-030-28665-1_10

    • ISBN
      9783030286644, 9783030286651
    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A classifier under the strongly spiked eigenvalue model in High-dimension, low-sample-size context2019

    • Author(s)
      A. ishii
    • Journal Title

      Communications in Statistics -Theory and Methods

      Volume: 印刷中

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Quadratic classifiers for high-dimensional noisy data2023

    • Author(s)
      Aki Ishii, Kazuyoshi Yata, Makoto Aoshima
    • Organizer
      The 6th International Conference on Econometrics and Statistics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 強スパイク固有値モデルにおける高次元共分散行列の統計的推測2023

    • Author(s)
      矢田 和善、石井 晶、青嶋 誠
    • Organizer
      2023年度統計関連学会連合大会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Estimation of eigenvectors for linear combinations of high-dimensional covariance matrices and its application2022

    • Author(s)
      Kazuyoshi Yata, Aki Ishii and Makoto Aoshima
    • Organizer
      The 5th International Conference on Econometrics and Statistics
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 強スパイク固有値モデルにおける高次元統計解析2022

    • Author(s)
      石井 晶
    • Organizer
      2022年度統計関連学会連合大会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Tests for covariance structures in high-dimensional data2021

    • Author(s)
      Kazuyoshi Yata, Aki Ishii and Makoto Aoshima
    • Organizer
      The 4th International Conference on Econometrics and Statistics
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] High-dimensional classifiers under the strongly spiked eigenvalue model2021

    • Author(s)
      Aki Ishii, Kazuyoshi Yata and Makoto Aoshima
    • Organizer
      The 4th International Conference on Econometrics and Statistics
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] High-dimensional quadratic classifiers under the strongly spiked eigenvalue model spiked eigenvalue model2021

    • Author(s)
      Aki Ishii, Kazuyoshi Yata and Makoto Aoshima
    • Organizer
      IISA 2021 Conference
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 単一強スパイク固有値モデルにおける高次元平均ベクトルの2標本検定2021

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      2021年度統計関連学会連合大会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 高次元データにおけるノイズ構造の高精度な解析に基づく統計的推測2021

    • Author(s)
      矢田和善、石井 晶、青嶋 誠
    • Organizer
      2021年度統計関連学会連合大会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 強スパイク固有値モデルにおける高次元2次判別2021

    • Author(s)
      石井 晶、矢田和善、青嶋 誠
    • Organizer
      応用統計学会年会2021年年会
    • Related Report
      2021 Research-status Report
  • [Presentation] Tests of high-dimensional correlation matrices under the strongly spiked eigenvalue model2020

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Organizer
      2020年度統計関連学会連合大会
    • Related Report
      2020 Research-status Report
  • [Presentation] 高次元固有ベクトルの検定について2020

    • Author(s)
      石井 晶, 矢田和善, 青嶋 誠
    • Organizer
      日本数学会2020年度秋季総合分科会
    • Related Report
      2020 Research-status Report
  • [Presentation] 高次元データに対する共分散構造の検定2020

    • Author(s)
      石井 晶、矢田 和善、青嶋 誠
    • Organizer
      京都大学数理解析研究所RIMS研究集会
    • Related Report
      2019 Research-status Report
  • [Presentation] データ変換を用いた高次元次判別分析について2020

    • Author(s)
      石井 晶、矢田 和善、青嶋 誠
    • Organizer
      日本学術振興会科学研究費によるシンポジウム「多様な高次元モデルにおける理論と方法論,及び,関連分野への応用」
    • Related Report
      2019 Research-status Report
  • [Presentation] 単一強スパイク固有値モデルに対する高次元平均ベクトルの2標本検定2019

    • Author(s)
      石井 晶、矢田 和善、青嶋 誠
    • Organizer
      日本学術振興会科学研究費によるシンポジウム「統計的推測および確率解析に関する総合的研究」
    • Related Report
      2019 Research-status Report
  • [Presentation] Tests for high-dimensiomal covariance structures under the SSE model2019

    • Author(s)
      Aki Ishii, Kazuyoshi Yata and Makoto Aoshima
    • Organizer
      日本学術振興会科学研究費によるシンポジウム「International Symposium on Theories and Methodologies for Large Complex Data」
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 単一強スパイク固有値モデルにおける高次元二標本検定2019

    • Author(s)
      石井 晶、矢田 和善、青嶋 誠
    • Organizer
      日本数学会2019年度秋季総合分科会
    • Related Report
      2019 Research-status Report
  • [Presentation] Tests for high-dimensional covariance structures based on eigenstructures2019

    • Author(s)
      Aki Ishii, Kazuyoshi Yata and Makoto Aoshima
    • Organizer
      2019年度統計関連学会連合大会
    • Related Report
      2019 Research-status Report
  • [Presentation] Geometrical quadratic discriminant analysis for high-dimension, strongly spiked eigenvalue models2019

    • Author(s)
      矢田 和善、石井 晶、青嶋 誠
    • Organizer
      日本学術振興会科学研究費によるシンポジウム「高次元複雑データの統計モデリング」
    • Related Report
      2019 Research-status Report
  • [Presentation] Inference on mean vectors for high-dimensional data with the strongly spiked eigenstructure2019

    • Author(s)
      Aki Ishii, Kazuyoshi Yata and Makoto Aoshima
    • Organizer
      The 3rd International Conference on Econometrics and Statistics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Tests of high-dimensional correlation matrices on the basis of eigenstructures2019

    • Author(s)
      Aki Ishii, Kazuyoshi Yata and Makoto Aoshima
    • Organizer
      The 7th International Workshop in Sequential Methodologies
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 強スパイク固有値モデルにおける高次元統計的推測(日本数学会特別講演)2019

    • Author(s)
      石井 晶
    • Organizer
      日本数学会2019年度年会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 強スパイク固有値モデルにおける固有空間の推測と高次元平均ベクトルの検定2019

    • Author(s)
      石井 晶、矢田 和善、青嶋 誠
    • Organizer
      京都大学数理解析研究所RIMS研究集会
    • Related Report
      2018 Research-status Report
  • [Presentation] Tests of high-dimensional mean vectors under the SSE model2019

    • Author(s)
      Ishii, A., Yata, K., Aoshima, M.
    • Organizer
      Waseda International Symposium“Introduction of General Causality to Various Data & its Applications”
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Tests of high-dimensional mean vectors under the SSE model2018

    • Author(s)
      Ishii, A., Yata, K., Aoshima, M.
    • Organizer
      International Symposium on Statistical Theory and Methodology for Large Complex Data
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] A quadratic classifier for high-dimensional data under the strongly spiked eigenvalue model2018

    • Author(s)
      Ishii, A., Yata, K., Aoshima, M.
    • Organizer
      2018年度統計関連学会連合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] Strongly spiked eigenvalue モデルにおける高次元相関ベクトルの検定について2018

    • Author(s)
      石井 晶、矢田 和善、青嶋 誠
    • Organizer
      日本数学会2018年度秋季総合分科会
    • Related Report
      2018 Research-status Report
  • [Presentation] Equality tests for high-dimensional covariance matrices2018

    • Author(s)
      Ishii, A., Yata, K., Aoshima, M.
    • Organizer
      The 27th South Taiwan Statistical Conference (27th STSC)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Equality tests of high-dimensional covariance matrices with strongly spiked eigenstructures2018

    • Author(s)
      Ishii, A., Yata, K., Aoshima, M.
    • Organizer
      The 2nd International Conference on Econometrics and Statistics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Inference on High-Dimensional Mean Vectors Under the Strongly Spiked Eigenvalue Model2018

    • Author(s)
      Yata, K., Aoshima, M., Ishii, A.
    • Organizer
      9-th International Workshop on Applied Probability
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Tests for high-dimensional covariance matrices and correlation matrices under the strongly spiked eigenvalue model2018

    • Author(s)
      石井 晶、矢田 和善、青嶋 誠
    • Organizer
      日本学術振興会科学研究費によるシンポジウム「融合する統計科学」
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi