• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

New implementations of the Calderon preconditioning for boundary element methods

Research Project

Project/Area Number 18K18063
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 60100:Computational science-related
Research InstitutionKyoto University

Principal Investigator

Niino Kazuki  京都大学, 情報学研究科, 助教 (10728182)

Project Period (FY) 2018-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2019: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
KeywordsCalderonの前処理 / 境界要素法 / 境界積分方程式 / Laplace方程式 / Helmholtz方程式 / Maxwell方程式
Outline of Final Research Achievements

In this research, we developed a new implementation of Calderon's preconditioning, which is one of acceleration methods for iterative linear solvers in boundary element methods. Calderon's preconditioning is known to significantly reduce the iteration numbers of iteration methods. Application of Calderon's preconditioning however takes more computational time for each iteration since use of a certain special basis function, which causes the increase of the computational time, is necessary. We propose an implementation of Calderon's preconditioning, which avoids the use of the special basis function by applying well-known regularizing method to operators appeared in Calderon's preconditioning.

Academic Significance and Societal Importance of the Research Achievements

本研究で開発した数値解法はLaplace方程式やHelmholtz方程式,Maxwell方程式など応用上重要な様々な方程式に適用可能であり,特に自由度が大きい問題に対して効果的であるため,様々な工学の分野で現れる大規模問題を解くための基礎的研究として重要であると考えられる.また本研究では新しい前処理法を開発しただけではなく,この前処理法が一見異なる既存の定式化とよく似ていることを発見し,これによって精度を改善した新しい積分方程式の定式化の開発などへとつながっているため,学術的にも今後の発展性のある研究であると言える.

Report

(3 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • Research Products

    (20 results)

All 2020 2019 2018

All Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (16 results) (of which Int'l Joint Research: 11 results,  Invited: 6 results) Book (1 results)

  • [Journal Article] Hilbert型変換を用いた一次元熱方程式に対する有限要素法について2019

    • Author(s)
      新納和樹,半澤美紗樹,Olaf Steinbach
    • Journal Title

      計算数理工学論文集

      Volume: 19 Pages: 95-98

    • NAID

      40022338181

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Stability of boundary element methods for the two dimensional wave equation in time domain revisited2019

    • Author(s)
      Mio Fukuhara, Ryota Misawa, Kazuki Niino, Naoshi Nishimura
    • Journal Title

      Engineering Analysis with Boundary Elements

      Volume: 108 Pages: 321-338

    • DOI

      10.1016/j.enganabound.2019.08.015

    • NAID

      120006764463

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Calderonの前処理を用いた3次元Laplace方程式に対する境界積分方程式の離散化について2018

    • Author(s)
      新納和樹、大塚悠貴、西村直志
    • Journal Title

      計算数理工学論文集

      Volume: 18

    • NAID

      40021749300

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] A formulation of the preconditioned EFIE using the Hdiv inner product with a single layer potential2020

    • Author(s)
      Kazuki Niino
    • Organizer
      IEEE AP-S/URSI 2020
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 3次元Helmholtz方程式に対する境界要素法における部分積分を用いたCalderonの前処理について2020

    • Author(s)
      田原寛太
    • Organizer
      計算工学講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Laplace方程式の基本会を用いたHdiv内積によるEFIEの離散化について2020

    • Author(s)
      森本菖
    • Organizer
      計算工学講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] A discretisation method for the electric field integral equation using the Hdiv inner product without the barycentric refinement2019

    • Author(s)
      Kazuki Niino
    • Organizer
      ICEAA
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Discretisation of the EFIE using the Hdiv inner product without the Buffa-Christiansen basis function2019

    • Author(s)
      Kazuki Niino
    • Organizer
      Waves
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] The Galerkin discretisation for the EFIE with the Calderonpreconditioning using the integration by parts2019

    • Author(s)
      Kazuki Niino
    • Organizer
      URSI EMTS 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Eigenvalue computations for periodic boundary vlaue problems for Maxwell's equations with the periodic FMMs and the Sakurai-Sugiura projection method2019

    • Author(s)
      Kazuki Niino
    • Organizer
      Taiwan-Japan joint workshop on inverse problems and related topics in Kyoto
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] A formulation fo the electric field integral equation with Calderon's preconditioning using integration by parts2019

    • Author(s)
      Kazuki Niino
    • Organizer
      ICOME2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 境界要素法における重心要素を用いないCalderonの前処理に関する一考察2019

    • Author(s)
      新納和樹
    • Organizer
      理論応用力学講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] A discretisation method for the elctric field integral equation using the Hdiv inner product without the barycentric refinement2019

    • Author(s)
      新納和樹
    • Organizer
      International conference on electromagnetics in advanced applications
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] The galerkin discretisation for the EFIE with the Calderon preconditioning using the integration by parts2019

    • Author(s)
      新納和樹
    • Organizer
      International symposium on electromagnetic theory
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Eigenvalue computations for periodic boundary value problems for Maxwell's equations with the periodic FMMs and the Sakurai-Sugiura projection method2019

    • Author(s)
      新納和樹
    • Organizer
      Taiwan-Japan joint workshop on inverse problems and related topics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Computation of layer potentials in the BEM with the space-time method for the heat equation in 2D2018

    • Author(s)
      新納和樹
    • Organizer
      IABEM symposium
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Calderon's preconditioning for the EFIE without the barycentric elements2018

    • Author(s)
      新納和樹
    • Organizer
      IEEE International symposium on antenna and propagation
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 境界要素法における重心要素を用いないCladeronの前処理に関する一考察2018

    • Author(s)
      新納和樹
    • Organizer
      日本応用数理学会
    • Related Report
      2018 Research-status Report
  • [Presentation] 3次元Laplace方程式に対する境界要素法における分割メッシュを用いないCalderonの前処理について2018

    • Author(s)
      大塚悠貴
    • Organizer
      計算工学講演会
    • Related Report
      2018 Research-status Report
  • [Book] New trends in computational electromagnetics2020

    • Author(s)
      Ozgur Ergul
    • Total Pages
      500
    • Publisher
      Scitech Pub Inc
    • ISBN
      1785615483
    • Related Report
      2019 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi