• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Super-Resolution and Segmentation of 3D Brain MR images using Multi-Channel data

Research Project

Project/Area Number 18K18078
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 61010:Perceptual information processing-related
Research InstitutionRitsumeikan University

Principal Investigator

Iwamoto Yutaro  立命館大学, 情報理工学部, 助教 (30779054)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Keywords医用画像処理 / 画質改善 / 超解像技術 / 深層学習 / セグメンテーション / マルチチャンネルデータ / 教師なし学習 / クラス分類 / 脳画像解析 / 高精細化 / 領域分割
Outline of Final Research Achievements

Multi-channel data (T1-weighted image and T2-weighted image, etc.) is useful for high-precision medical image analysis such as segmentation of 3D brain MR images. However, due to the limitation of acquisition time of clinical requirements, these data are difficult to acquire with the same resolution. In this study, we proposed a super-resolution of MR images using deep learning. The proposed method enhances the resolution of low-resolution T2-weighted images by referring to high-resolution T1-weighted images. The proposed method can achieve better performance compared with several state-of-the-art methods. Furthermore, we also incorporate an unsupervised approach without high-resolution T2-weighted images as training data.

Academic Significance and Societal Importance of the Research Achievements

近年複数のモダリティ画像(CT、MRI、PETなど)を用いた医用画像解析が盛んに行われている。これらのデータはモダリティ毎に解像度が異なることが多く、医用画像解析の前処理として解像度を揃える必要がある。従来は補間技術により解像度を合わせていたがエッジ領域のぼけやジャギなどが発生するため、高精度な領域分割(セグメンテーション)などでは問題となる。本課題はこの問題を解決することができる。また、医用画像のみならず解像度の異なる複数のセンサで取得されるデータ(カラー画像-深度画像、パンクロマティック画像-ハイパースペクトル画像)に対しても応用することができるため、研究の意義は大きい。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (21 results)

All 2021 2020 2019 2018 Other

All Int'l Joint Research (4 results) Journal Article (2 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (15 results) (of which Int'l Joint Research: 12 results,  Invited: 2 results)

  • [Int'l Joint Research] Dong-A University/Dong-A University Hospital(韓国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Zhejiang University(中国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Dong-A University/Dong-A University Hospital(韓国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Dong-A University/Dong-A University Hospital(韓国)

    • Related Report
      2018 Research-status Report
  • [Journal Article] VolumeNet: A Lightweight Parallel Network for Super-Resolution of MR and CT Volumetric Data2021

    • Author(s)
      Yinhao Li, Yutaro Iwamoto, Lanfen Lin, Rui Xu, Ruofeng Tong, Yen-Wei Chen
    • Journal Title

      IEEE Transactions on Image Processing

      Volume: - Pages: 4840-4854

    • DOI

      10.1109/tip.2021.3076285

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Accurate BAPL Score Classification of Brain PET Images Based on Convolutional Neural Networks with a Joint Discriminative Loss Function2020

    • Author(s)
      Ryosuke Sato, Yutaro Iwamoto, Kook Cho, Do-Young Kang, Yen-Wei Chen
    • Journal Title

      Applied Sciences

      Volume: 10 Issue: 3 Pages: 1-13

    • DOI

      10.3390/app10030965

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Automatic Detection and Segmentation of Liver Tumors in Multi-Phase CT Images by Phase Attention Mask R-CNN2021

    • Author(s)
      Ryo Hasegawa, Yutaro Iwamoto, Xianhua Han, Lanfen Lin, Hongjie Hu, Xiujun Cai, and Yen-Wei Chen
    • Organizer
      Proc. of 39th IEEE International Conference on Consumer Electronics, ICCE2021
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Multimodal Priors Guided Segmentation of Liver Lesions in MRI Using Mutual Information Based Graph Co-Attention Networks2020

    • Author(s)
      Shaocong Mo, Ming Cai, Lanfen Lin, Ruofeng Tong, Qingqing Chen, Fang Wang, Hongjie Hu, Yutaro Iwamoto, Xian-Hua Han, Yen-Wei Chen
    • Organizer
      Medical Image Computing and Computer Assisted Intervention, MICCAI 2020
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] UNET 3+: A Full-Scale Connected UNET for Medical Image Segmentation2020

    • Author(s)
      Huiming Huang, Lanfen Lin, Ruofeng Tong, Hongjie Hu, Qiaowei Zhang, Yutaro Iwamoto, Xian-Hua Han, Yen-Wei Chen, Jian Wu
    • Organizer
      Proc. of the 45th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP2020
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] WNET: An End-to-end Atlas-Guided and Boundary-Enhanced Network for for Medical Image Segmentation2020

    • Author(s)
      Huiming Huang, Lanfen Lin, Ruofeng Tong, Hongjie Hu, Qiaowei Zhang, Yutaro Iwamoto, Xian-Hua Han, Yen-Wei Chen, Jian Wu
    • Organizer
      Proc. of IEEE International Symposium on Biomedical Imaging, ISBI2020
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A 3D Shrinking-and-Expanding Module with Channel Attention for Efficient Deep Learning-Based Super-Resolution2020

    • Author(s)
      Yinhao Li, Yutaro Iwamoto, and Yen-Wei Chen
    • Organizer
      Innovation in Medicine and Healthcare, Smart Innovation, Systems and Technologies, InMed2020
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Lightweight Deep Network for 3D Medical Image Segmentation2020

    • Author(s)
      Toshiki Kawahara, Yinhao Li, Yutaro Iwamoto, Lanfen Lin, Yen-Wei Chen
    • Organizer
      Proc. of 2020 IEEE 8th Global Conference on Consumer Electronics, GCCE 2020
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Development of an Interactive Semantic Medical Image Segmentation System2020

    • Author(s)
      Hikari Jinbo, Titinunt Kitrungrotsaku, Yutaro Iwamoto, Lanfen Lin, Hongjie Hu, Yen-Wei Chen
    • Organizer
      Proc. of 2020 IEEE 8th Global Conference on Consumer Electronics, GCCE 2020
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Color Guided Depth Map Super-Resolution based on a Deep Self-Learning Approach2020

    • Author(s)
      Kyohei Takeda, Yutaro Iwamoto, Yen-Wei Chen
    • Organizer
      2020 IEEE International Conference on Consumer Electronics (ICCE)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 三次元計測の基礎と深度画像の高解像度化2020

    • Author(s)
      岩本 祐太郎
    • Organizer
      先進電磁波イメージング研究会
    • Related Report
      2019 Research-status Report
  • [Presentation] Automatic Segmentation of the Paranasal Sinus from Computer Tomography Images Using a Probabilistic Atlas and a Fully Convolutional Network2019

    • Author(s)
      Yutaro Iwamoto, Kun Xiong, Takahiro Kitamura, Xian-Hua Han, Naoki Matsushiro, Hiroshi Nishimura, Yen-Wei Chen
    • Organizer
      2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Advanced deep learning for liver segmentation and liver lesion classification2019

    • Author(s)
      Yutaro Iwamoto
    • Organizer
      6th International Symposium on AI-driven Analysis of Medical Imaging
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Automatic Segmentation of Infant Brain Ventricles with Hydrocephalus in MRI based on 2.5D U-net and Transfer Learning2019

    • Author(s)
      Kenji Ono, Yutaro Iwamoto, Yen-Wei Chen, Masahiro Nonaka
    • Organizer
      2019 2nd International Conference on Digital Medicine and Image Processing (DMIP 2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Comparison of Hand-craft Subtype Features, Deep Learning Features and Their Fused Features for Classification of Alzheimer's Disease2019

    • Author(s)
      Naohiro Hashizume, Yutaro Iwamoto, Akihiko Shiino, Yen-Wei Chen
    • Organizer
      2019 2nd International Conference on Digital Medicine and Image Processing (DMIP 2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] AutoEncoderによるマルチモーダルMR脳画像の教師無しセグメンテーション2018

    • Author(s)
      永田敬之、橋爪直寛、岩本祐太郎、陳延偉
    • Organizer
      平成30年電気関係学会関西連合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] Three-class Classification of PET scans in Alzheimer's disease Based on Convolutional Neural Network2018

    • Author(s)
      岩本祐太郎
    • Organizer
      4th International Symposium on AI-based Analysis of Medical Database
    • Related Report
      2018 Research-status Report
    • Invited

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi