• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Transportation analysis of deep neural networks

Research Project

Project/Area Number 18K18113
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionInstitute of Physical and Chemical Research

Principal Investigator

Sonoda Sho  国立研究開発法人理化学研究所, 革新知能統合研究センター, 研究員 (00801218)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywordsニューラルネット / ホワイトボックス化 / 積分表現理論 / リッジレット変換 / Neural ODE / カーネル求積 / 非コンパクト対称空間 / 群畳み込み / 零空間 / 調和解析 / 量子機械学習 / 連続神経場 / ラドン変換 / オーバーパラメトライズ / ランダム特徴量 / 近似下限 / ODE-Net / 局所ラデマッハ複雑度 / 量子計算機 / ベゾフ空間 / リッジレット解析 / 深層ニューラルネット / 大域最適 / 確率的数値解析 / 粒子フィルタ / 最適輸送 / 脳波 / 最適輸送理論 / 機械学習
Outline of Final Research Achievements

Joint research with Dr. Isao Ishikawa (Ehime Univ.) and Dr. Masahiro Ikeda (RIKEN) has led to dramatic progress in integral representation theory. In particular, we have found a general method for deriving ridgelet transforms for various hidden layers, such as fully-connected layers on manifolds and group convolution layers on signal spaces, which has dramatically improved the applicability of integral representation theory. Moreover, the integral representation theory and transport theory have triggered many collaborative researches with researchers in related fields such as quantum machine learning, neuroscience, harmonic analysis, probabilistic numerical analysis, control theory, and differential equation theory. On the other hand, research on transport theory is still at the case-by-case stage, and I believe that a more fundamental theory needs to be developed in future.

Academic Significance and Societal Importance of the Research Achievements

一般に学習済ニューラルネット(NN)の情報処理様式を外部から読み解くことは難しい.NNが誤動作しないよう制御するため,ホワイトボックス化が求められる.積分表現と輸送解釈はいずれも,NNを線形空間という性質の良い空間で表現する方法論であり,ホワイトボックス化の有力候補である.積分表現の強みであるリッジレット変換は特定の全結合型NNに限って発見されていたが,本研究により現代的なNNに対して機械的に導出できるようになり,NNのホワイトボックス化に貢献した.

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (85 results)

All 2022 2021 2020 2019 2018 Other

All Int'l Joint Research (9 results) Journal Article (9 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 8 results,  Open Access: 6 results) Presentation (66 results) (of which Int'l Joint Research: 25 results,  Invited: 32 results) Funded Workshop (1 results)

  • [Int'l Joint Research] 浙江師範大学(中国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] IQOQI Vienna(オーストリア)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] Oxford University/Alan Turing Institute(英国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] 浙江師範大学(中国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Max Planck Institute(ドイツ)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Zhejiang Normal University/China Jiliang University/Peking University(中国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] The University of New South Wales(オーストラリア)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Robert Bosch GmbH(ドイツ)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] University of Tuebingen/Robert Bosch GmbH(ドイツ)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Fully-Connected Network on Noncompact Symmetric Space and Ridgelet Transform based on Helgason-Fourier Analysis2022

    • Author(s)
      Sho Sonoda, Isao Ishikawa, Masahiro Ikeda
    • Journal Title

      Proceedings of the 39th International Conference on Machine Learning

      Volume: -

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Differentiable Multiple Shooting Layers2021

    • Author(s)
      Stefano Massaroli, Michael Poli, Sho Sonoda, Taiji Suzuki, Jinkyoo Park, Atsushi Yamashita, Hajime Asama
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 34 Pages: 16532-16544

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Ridge Regression with Over-Parametrized Two-Layer Networks Converge to Ridgelet Spectrum2021

    • Author(s)
      S. Sonoda, I. Ishikawa, M. Ikeda
    • Journal Title

      Proceedings of The 24th International Conference on Artificial Intelligence and Statistics

      Volume: 130 Pages: 2674-2682

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] ニューラルネットの関数解析的方法と無限次元零空間2021

    • Author(s)
      園田翔
    • Journal Title

      日本統計学会誌

      Volume: 50 Pages: 285-316

    • NAID

      130007995101

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Learning with Optimized Random Features: Exponential Speedup by Quantum Machine Learning without Sparsity and Low-Rank Assumptions2020

    • Author(s)
      H. Yamasaki, S. Subramanian, S. Sonoda, M. Koashi
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 33 Pages: 13674-13687

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Transport Analysis of Infinitely Deep Neural Network2019

    • Author(s)
      Sho Sonoda, Noboru Murata
    • Journal Title

      Journal of Machine Learning Research

      Volume: 20 Pages: 1-52

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] EEG dipole source localization with information criteria for multiple particle filters2018

    • Author(s)
      Sonoda Sho, Nakamura Keita, Kaneda Yuki, Hino Hideitsu, Akaho Shotaro, Murata Noboru, Miyauchi Eri, Kawasaki Masahiro
    • Journal Title

      Neural Networks

      Volume: 108 Pages: 68-82

    • DOI

      10.1016/j.neunet.2018.08.008

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Localizing Current Dipoles from EEG Data Using a Birth-Death Process2018

    • Author(s)
      Nakamura Keita, Sonoda Sho, Hino Hideitsu, Kawasaki Masahiro, Akaho Shotaro, Murata Noboru
    • Journal Title

      2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

      Volume: 1 Pages: 2645-2651

    • DOI

      10.1109/bibm.2018.8621504

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] 生成・消滅過程に基づくEEGデータの電流ダイポール推定2018

    • Author(s)
      中村圭太, 園田翔, 日野英逸, 川崎真弘, 赤穂昭太郎, 村田昇
    • Journal Title

      研究報告数理モデル化と問題解決(MPS)

      Volume: 2018-MPS-118 Pages: 1-8

    • Related Report
      2018 Research-status Report
  • [Presentation] Fully-Connected Network on Noncompact Symmetric Space and Ridgelet Transform based on Helgason-Fourier Analysis2022

    • Author(s)
      Sho Sonoda, Isao Ishikawa, Masahiro Ikeda
    • Organizer
      The 39th International Conference on Machine Learning (ICML2022)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Differentiable Multiple Shooting Layers2021

    • Author(s)
      Stefano Massaroli, Michael Poli, Sho Sonoda, Taiji Suzuki, Jinkyoo Park, Atsushi Yamashita, Hajime Asama
    • Organizer
      The 35th Neural Information Processing Systems (NeurIPS 2021)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Quantum algorithm for sampling optimal random features2021

    • Author(s)
      S.Sonoda, H. Yamasaki, S. Subramanian, and M. Koashi
    • Organizer
      RQC-AIP Joint Seminar
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Regression and Classification with Optimized Random Features: Applications of Exponential Speedup by Quantum Machine Learning without Sparsity and Low-Rankness Assumptions2021

    • Author(s)
      H. Yamasaki, S. Subramanian, S. Sonoda and M. Koashi
    • Organizer
      Quantum Techniques in Machine Learning (QTML) 2021
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Regression and Classification with Optimized Random Features: Applications of Exponential Speedup by Quantum Machine Learning without Sparsity and Low-Rankness Assumptions2021

    • Author(s)
      H. Yamasaki, S. Subramanian, S. Sonoda and M. Koashi
    • Organizer
      21th Asian Quantum Information Science Conference (AQIS2021)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Ridgelet transform on the matrix space2021

    • Author(s)
      S.Sonoda, I.Ishikawa, M.Ikeda
    • Organizer
      13th International ISAAC Congress
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 非コンパクト対称空間上の連続ニューラルネットとそのリッジレット変換2021

    • Author(s)
      園田翔, 石川勲, 池田正弘
    • Organizer
      2021年度応用数学合同研究集会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 群畳み込みニューラルネットのリッジレット変換2021

    • Author(s)
      園田翔, 石川勲, 池田正弘
    • Organizer
      第24回 情報論的学習理論ワークショップ(IBIS2021)
    • Related Report
      2021 Annual Research Report
  • [Presentation] 重み付きSobolev空間におけるニューラルネット積分表現作用素の有界性2021

    • Author(s)
      園田翔, 石川勲, 池田正弘
    • Organizer
      実解析学シンポジウム2021
    • Related Report
      2021 Annual Research Report
  • [Presentation] 積分表現ニューラルネットが定める積分方程式の一般解2021

    • Author(s)
      園田翔, 石川勲, 池田正弘
    • Organizer
      日本応用数理学会2021年度年会
    • Related Report
      2021 Annual Research Report
  • [Presentation] ニューラルネットの零空間の精密構造と統計的役割2021

    • Author(s)
      園田翔, 石川勲, 池田正弘
    • Organizer
      2021年度 統計関連学会連合大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 積分表現でニューラルネットを理解する2021

    • Author(s)
      園田翔
    • Organizer
      2021年度第5回マス・フォア・イノベーションセミナー
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Ghosts in Neural Networks2021

    • Author(s)
      園田翔
    • Organizer
      第1回AI数理セミナー
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Ridge Regression with Over-Parametrized Two-Layer Networks Converge to Ridgelet Spectrum2021

    • Author(s)
      S. Sonoda, I. Ishikawa, M. Ikeda
    • Organizer
      The 24th International Conference on Artificial Intelligence and Statistics (AISTATS2021)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Learning with Optimized Random Features: Exponential Speedup by Quantum Machine Learning without Sparsity and Low-Rank Assumptions2020

    • Author(s)
      H. Yamasaki, S. Subramanian, S. Sonoda, M. Koashi
    • Organizer
      20th Asian Quantum Information Science Conference (AQIS 2020)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Learning with Optimized Random Features: Exponential Speedup by Quantum Machine Learning without Sparsity and Low-Rank Assumptions2020

    • Author(s)
      H. Yamasaki, S. Subramanian, S. Sonoda, M. Koashi
    • Organizer
      The 34th Neural Information Processing Systems (NeurIPS 2020)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] 積分幾何学に基づくニューラルネットの新しい再構成公式2020

    • Author(s)
      園田翔, 石川勲, 池田正弘
    • Organizer
      第23回 情報論的学習理論ワークショップ(IBIS2020)
    • Related Report
      2020 Research-status Report
  • [Presentation] オーバーパラメトライズされた有限ニューラルネットの最適解2020

    • Author(s)
      園田翔, 石川勲, 池田正弘
    • Organizer
      第23回 情報論的学習理論ワークショップ(IBIS2020)
    • Related Report
      2020 Research-status Report
  • [Presentation] ランダムニューラルネットの近似下限評価2020

    • Author(s)
      園田翔, Ming Li
    • Organizer
      2020年度 統計関連学会連合大会
    • Related Report
      2020 Research-status Report
  • [Presentation] Characterizing Deep Learning Solutions by Using Ridgelet Transform2020

    • Author(s)
      S. Sonoda
    • Organizer
      Differential Equations for Data Science 2021 (DEDS2021)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 積分幾何学に基づくニューラルネットのパラメータ分布再考2020

    • Author(s)
      園田翔
    • Organizer
      第23回 情報論的学習理論ワークショップ(IBIS2020)・企画セッション「学習理論」
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] 深層学習を微分方程式で記述する2020

    • Author(s)
      園田翔
    • Organizer
      第41回IBISML研究会・企画セッション「ダイナミクスと機械学習の接点」
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Harmonic Analysis for Neural Networks and its Applications2020

    • Author(s)
      S. Sonoda
    • Organizer
      Applied and Computational Math Seminar, National University of Singapore (online)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 連続ニューラルネットのリッジレット変換による解析2020

    • Author(s)
      園田翔
    • Organizer
      2020年度第2回明治非線型数理セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] A New Reconstruction Formula of Neural Networks based on Radon Transform and Its Applications2020

    • Author(s)
      S. Sonoda
    • Organizer
      The 1st Machine Learning Zoom Seminar
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Functional Analysis Methods for Neural Network Theory2020

    • Author(s)
      S. Sonoda
    • Organizer
      The 20th AIP Open Seminar
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Random neural field learning: Formalization and numerical experiments via NTK2019

    • Author(s)
      Kaito Watanabe, Kota Sakamoto, Ryo Karakida, Sho Sonoda, Shunichi Amari
    • Organizer
      ACML 2019 Workshop on Statistics & Machine Learning Researchers in Japan
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Continuous Model of Deep Neural Networks2019

    • Author(s)
      Sho Sonoda
    • Organizer
      IIT-RIKEN Workshop
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Generalized kernel quadrature for synthesizing neural networks2019

    • Author(s)
      Sho Sonoda
    • Organizer
      Generalized kernel quadrature for synthesizing neural networks Data Science, Statistics & Visualization (DSSV2019), a satellite conference of the 62nd World Statistics Congress, promoted by IASC
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Stein's method for computing inverse operators2019

    • Author(s)
      Sho Sonoda
    • Organizer
      ICML 2019 Workshop on Stein's Method in Machine Learning and Statistics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Coordinate-free approaches to neural networks2019

    • Author(s)
      Sho Sonoda
    • Organizer
      PAIR-AIP Joint Research Workshop
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 深層学習の汎化誤差評価2019

    • Author(s)
      園田翔
    • Organizer
      理研AIP数学系合同セミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] 連続ニューラルネットの諸相2019

    • Author(s)
      園田翔
    • Organizer
      情報系 WINTER FESTA Episode 5
    • Related Report
      2019 Research-status Report
  • [Presentation] ランダム神経場の学習 -NTKによる定式化と実験的検証-2019

    • Author(s)
      渡部海斗, 坂本航太郎, 園田翔, 唐木田亮, 甘利俊一
    • Organizer
      第22回 情報論的学習理論ワークショップ(IBIS2019)
    • Related Report
      2019 Research-status Report
  • [Presentation] ReLU深層ニューラルネットワークの一般化されたBesov空間での関数近似能力について2019

    • Author(s)
      谷口晃一, 池田正弘, 園田翔, 大野健太, 鈴木大慈
    • Organizer
      第22回 情報論的学習理論ワークショップ(IBIS2019)
    • Related Report
      2019 Research-status Report
  • [Presentation] 量子コンピュータによる高速ランダム特徴量サンプリング2019

    • Author(s)
      山崎隼汰, Sathyawageeswar Subramanian, 園田翔
    • Organizer
      第22回 情報論的学習理論ワークショップ(IBIS2019)
    • Related Report
      2019 Research-status Report
  • [Presentation] Fast quantum algorithm for data approximation by optimized random features2019

    • Author(s)
      Hayata Yamasaki, Sathyawageeswar Subramanian, Sho Sonoda, Masato Koashi
    • Organizer
      量子情報技術研究会(QIT)
    • Related Report
      2019 Research-status Report
  • [Presentation] Barron評価を達成するニューラルネットの構成法2019

    • Author(s)
      園田翔
    • Organizer
      日本応用数理学会2019年度年会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] カーネル求積による浅いモデルの学習法2019

    • Author(s)
      園田翔
    • Organizer
      2019年度 統計関連学会連合大会
    • Related Report
      2019 Research-status Report
  • [Presentation] ニューラルネットの連続モデル2019

    • Author(s)
      園田翔
    • Organizer
      福岡大学
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 深層ニューラルネットについて2019

    • Author(s)
      園田翔
    • Organizer
      第6回日本橋確率論セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Continuous Model of Deep Neural Networks2019

    • Author(s)
      Sho Sonoda
    • Organizer
      South China Normal University
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] ニューラルネットの連続モデル2019

    • Author(s)
      園田翔
    • Organizer
      大阪大学 数理・データ科学セミナー 数理モデルセミナーシリーズ 第24回
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 連続モデルによるニューラルネットの解析2019

    • Author(s)
      園田翔
    • Organizer
      金沢大学 第2回微分方程式とデータサイエンス研究会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Continuous Model of Deep Neural Networks2019

    • Author(s)
      Sho Sonoda
    • Organizer
      Theory towards Brains, Machines and Minds, RIKEN CBS
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Continuous Model of Deep Neural Networks2019

    • Author(s)
      Sho Sonoda
    • Organizer
      Peking University
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Numerical Integration Method for Training Neural Networks2019

    • Author(s)
      Sho Sonoda
    • Organizer
      The 12th International Conference on Monte Carlo Methods and Applications (MCM2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 最適制御にもとづく機械学習の試み2019

    • Author(s)
      園田翔
    • Organizer
      Workshop on Transport at Metropolitan
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 深層学習入門2019

    • Author(s)
      園田翔
    • Organizer
      理研AIP数学系合同セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Localizing Current Dipoles from EEG Data Using a Birth Death Process2018

    • Author(s)
      Nakamura Keita, Sonoda Sho, Hino Hideitsu, Kawasaki Masahiro, Akaho Shotaro, Murata Noboru
    • Organizer
      IEEE BIBM 2018 workshop on Machine Learning for EEG Signal Processing (MLESP 2018)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Integral representation of shallow neural network that attains the global minimum2018

    • Author(s)
      Sho Sonoda, Isai Ishikawa, Masahiro Ikeda, Kei Hagihara, Yoshihiro Sawano, Takuo Matsubara, Noboru Murata
    • Organizer
      The First Japan-Israel Machine Learning Workshop (JIML)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] An explicit expression for the global minimizer network2018

    • Author(s)
      Sho Sonoda, Isai Ishikawa, Masahiro Ikeda, Kei Hagihara, Yoshihiro Sawano, Takuo Matsubara, Noboru Murata
    • Organizer
      ICML 2018 Workshop on Theory of Deep Learning (TDL)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] カーネル求積による積分変換の計算2018

    • Author(s)
      園田翔
    • Organizer
      第21回 情報論的学習理論ワークショップ(IBIS2018)
    • Related Report
      2018 Research-status Report
  • [Presentation] 生成・消滅過程に基づくEEGデータの電流ダイポール推定2018

    • Author(s)
      中村圭太, 園田翔, 日野英逸, 川崎真弘, 赤穂昭太郎, 村田昇
    • Organizer
      第33回 IBISML研究会
    • Related Report
      2018 Research-status Report
  • [Presentation] Continuous Model of Deep Neural Networks2018

    • Author(s)
      Sho Sonoda
    • Organizer
      Invited Lecture at Max Planck Institute for Intelligent Systems
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Inverse problem in denoising autoencoder2018

    • Author(s)
      園田翔
    • Organizer
      2019 RIMS 共同研究 「偏微分方程式に対する逆問題の数学解析とその周辺」
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 数値積分によるニューラルネットの学習2018

    • Author(s)
      園田翔
    • Organizer
      2018 RIMS 共同研究 「次世代の科学技術を支える数値解析学の基盤整備と応用展開」
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 深層学習入門2018

    • Author(s)
      園田翔
    • Organizer
      第21回 情報論的学習理論ワークショップ(IBIS2018) チュートリアル
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 機械学習と解析学2018

    • Author(s)
      園田翔
    • Organizer
      第3回東京実解析セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 深層ニューラルネットの数理2018

    • Author(s)
      園田翔
    • Organizer
      山形大学DS推進室キックオフミーティング
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 深層ニューラルネット理論の近況2018

    • Author(s)
      園田翔
    • Organizer
      日本数学会2018年度秋季総合分科会 応用数学特別セッション「機械学習の数学的課題: 深層学習の理論を中心に」
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 深層ニューラルネットの数理2018

    • Author(s)
      園田翔
    • Organizer
      津山高専人工知能研究講演会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Mathematical Models of Neural Networks2018

    • Author(s)
      Sho Sonoda
    • Organizer
      Brawijaya University Seminar on Mathematical Analysis and Its Application
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 大域最適解を与えるニューラルネットの積分表現2018

    • Author(s)
      園田翔
    • Organizer
      第3回統計・機械学習若手シンポジウム「統計・機械学習の交わりと広がり」
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 深層学習の基礎理論と発展2018

    • Author(s)
      園田翔
    • Organizer
      第37回日本医用画像工学会大会 (JAMIT2018) シンポジウム2「深層学習の基礎理論と発展」
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 深層ニューラルネットの数理モデル2018

    • Author(s)
      園田翔
    • Organizer
      名古屋工業大学講演会「最適輸送と機械学習理論の周辺」
    • Related Report
      2018 Research-status Report
    • Invited
  • [Funded Workshop] Quantum Machine Learning Seminar2021

    • Related Report
      2021 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi