• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Ehanced training of complex deep neural networks via netural gradient learning realized with reparametrization techniques

Research Project

Project/Area Number 18K18121
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 61040:Soft computing-related
Research InstitutionThe University of Tokyo

Principal Investigator

Kiwaki Taichi  東京大学, 大学院情報理工学系研究科, 特任助教 (70786011)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords機械学習 / 眼科学 / ニューラルネットワーク / 緑内障 / マルチタスク学習 / 深層ニューラルネットワーク / 医療画像分析 / 医療データマイニング / バッチ正規化 / PCA
Outline of Final Research Achievements

In this research project, we improved training of neural networks, which are commonly used machine learning models, for ophthalmology dataset on glaucoma, which is one of the most serious eye disease. In this application field, we need to (1) tackle a problem of limited availability of data, and (2) explain the result in a medical perspective. Upon these points, this project developed a method to train a model so that it can attain meaningful knowledge from small sized datasets, explained the behavior of a trained model from a medical point of view, and verified the effectiveness of the developed methods in a form which can be accepted by medical communities.

Academic Significance and Societal Importance of the Research Achievements

緑内障は失明の可能性もある進行性の眼病であるが、治療によって進行を遅らせることが出来るため、その進行予測ならびに症状診断は非常に重要である。しかし症状診断と進行予測の両方に不可欠とされて来た眼の視野感度試験は、計測コストが高くまた計測毎のばらつきから来る信頼性にも問題がある。本研究で開発した手法は機械学習手法を利用してこの問題に対処するものであり、社会的な意義は非常に高い。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (8 results)

All 2021 2020 2019 2018

All Journal Article (5 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 5 results,  Open Access: 4 results) Presentation (3 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] A Joint Multitask Learning Model for Cross-sectional and Longitudinal Predictions of Visual Field Using OCT2021

    • Author(s)
      Asaoka Ryo、Xu Linchuan、Murata Hiroshi、Kiwaki Taichi、Matsuura Masato、Fujino Yuri、Tanito Masaki、Mori Kazuhiko、Ikeda Yoko、Kanamoto Takashi、Inoue Kenji、Yamagami Jukichi、Yamanishi Kenji
    • Journal Title

      Ophthalmology Science

      Volume: 1 Issue: 4 Pages: 100055-100055

    • DOI

      10.1016/j.xops.2021.100055

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Predicting 10-2 Visual Field From Optical Coherence Tomography in Glaucoma Using Deep Learning Corrected With 24-2/30-2 Visual Field2021

    • Author(s)
      Hashimoto Yohei、Kiwaki Taichi、Sugiura Hiroki、Asano Shotaro、Murata Hiroshi、Fujino Yuri、Matsuura Masato、Miki Atsuya、Mori Kazuhiko、Ikeda Yoko、Kanamoto Takashi、Yamagami Junkichi、Inoue Kenji、Tanito Masaki、Yamanishi Kenji、Asaoka Ryo
    • Journal Title

      Translational Vision Science & Technology

      Volume: 10 Issue: 13 Pages: 28-28

    • DOI

      10.1167/tvst.10.13.28

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Improving Visual Field Trend Analysis with OCT and Deeply Regularized Latent-Space Linear Regression2021

    • Author(s)
      Xu Linchuan、Asaoka Ryo、Murata Hiroshi、Kiwaki Taichi、Zheng Yuhui、Matsuura Masato、Fujino Yuri、Tanito Masaki、Mori Kazuhiko、Ikeda Yoko、Kanamoto Takashi、Yamanishi Kenji
    • Journal Title

      Ophthalmology Glaucoma

      Volume: 4 Issue: 1 Pages: 78-88

    • DOI

      10.1016/j.ogla.2020.08.002

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma2020

    • Author(s)
      Hashimoto Yohei、Asaoka Ryo、Kiwaki Taichi、Sugiura Hiroki、Asano Shotaro、Murata Hiroshi、Fujino Yuri、Matsuura Masato、Miki Atsuya、Mori Kazuhiko、Ikeda Yoko、Kanamoto Takashi、Yamagami Junkichi、Inoue Kenji、Tanito Masaki、Yamanishi Kenji
    • Journal Title

      British Journal of Ophthalmology

      Volume: 105 Issue: 4 Pages: 507-513

    • DOI

      10.1136/bjophthalmol-2019-315600

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression2020

    • Author(s)
      Xu Linchuan、Asaoka Ryo、Kiwaki Taichi、Murata Hiroshi、Fujino Yuri、Matsuura Masato、Hashimoto Yohei、Asano Shotaro、Miki Atsuya、Mori Kazuhiko、Ikeda Yoko、Kanamoto Takashi、Yamagami Junkichi、Inoue Kenji、Tanito Masaki、Yamanishi Kenji
    • Journal Title

      American Journal of Ophthalmology

      Volume: 218 Pages: 304-313

    • DOI

      10.1016/j.ajo.2020.04.037

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] PAMI: A Computational Module for Joint Estimation and Progression Prediction of Glaucoma2021

    • Author(s)
      Xu Linchuan、Asaoka Ryo、Kiwaki Taichi、Murata Hiroshi、Fujino Yuri、Yamanishi Kenji
    • Organizer
      27th ACM SIGKDD
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Glaucoma Progression Prediction Using Retinal Thickness via Latent Space Linear Regression2019

    • Author(s)
      Yuhui Zheng, Linchuan Xu, Taichi Kiwaki, Jing Wang, Hiroshi Murata, Ryo Asaoka, Kenji Yamanishi
    • Organizer
      25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Estimating Glaucomatous Visual Sensitivity from Retinal Thickness with Pattern-Based Regularization and Visualization2018

    • Author(s)
      Suigura, Kiwaki, Yousefi, Murata, Asaoka, and Yamanishi
    • Organizer
      24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi