Information Retrieval on Social Web Sites That Gathered Multiple Opinions
Project/Area Number |
18K18161
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 62020:Web informatics and service informatics-related
|
Research Institution | Aoyama Gakuin University |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2021: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2020: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 情報検索 / レビューサイト / ランキング学習 / オンラインレビュー / 意見の集約 / ランキング / Learning to rank / BERT / 行動ログ分析 / Location2Vec / 位置情報付き投稿 / 映画レビュー / アニメレビュー / 先見の明 / ウェブ検索 / ソーシャルメディア / レビュー |
Outline of Final Research Achievements |
We proposed the methods for aggregating and making searchable the opinions of multiple people on a single topic, such as a review of a certain product. As a concrete example, when various contributors with different backgrounds are on a movie review site, and they review movies using different expressions such as "it made me cry" or "it made my handkerchief soggy," existing document search algorithms cannot correctly rank these movies. We proposed a search algorithm that actually sorts movies in order of likelihood of crying based on the keyword "crying." For this purpose, we successfully extracted the characteristics of movies from the review text, considered the characteristics of the author of the review, and actually generated search results ranking using LEarning to Rank-based techniques.
|
Academic Significance and Societal Importance of the Research Achievements |
近年のWebは、ウェアラブルデバイスなどの普及や、より気軽に投稿できるソーシャルメディアの流行に伴い、より断片的で些細な投稿の集積物になりつつある。そのため、これらをトピックごとにまとめ、任意のキーワードでランキング可能にする技術は重要異性が高い。本研究では、例えば、レビューサイトの投稿を映画ごとにまとめることで「最も『泣ける』映画はどれか」という検索を可能にしたり、地図サイト上の投稿を地物ごとにその目的をまとめることで「『ギターの練習』ができそうな場所はどこか」という検索を可能にした。
|
Report
(5 results)
Research Products
(41 results)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[Presentation] 文化財の特徴理解に特化したBERTモデル2022
Author(s)
三林亮太, 上田昌輝, 川原敬史, 松本直彰, 吉村拓真, 相原健郎, 神門典子, 莊司慶行, 中島悠太, 山本岳洋, 山本祐輔, 大島裕明
Organizer
第14回データ工学と情報マネジメントに関するフォーラム
Related Report
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-