• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The McKay correspondence over number fields

Research Project

Project/Area Number 18K18710
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 11:Algebra, geometry, and related fields
Research InstitutionOsaka University (2020)
Tohoku University (2018-2019)

Principal Investigator

Yasuda Takehiko  大阪大学, 理学研究科, 教授 (30507166)

Project Period (FY) 2018-06-29 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2020: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2018: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Keywordsマッカイ対応 / 非線形作用 / 局所体 / KLT特異点 / p冪位数巡回群 / モジュライ空間 / McKay対応 / 冪級数体 / Artin-Schreier-Witt拡大 / モチーフ積分 / 等標数 / 特異点 / Batyrev-Manin予想 / Malle予想 / 概均質ベクトル空間
Outline of Final Research Achievements

This research was aimed at studying the McKay correspondence over global fields, that is, number fields and functions fields. Obtained results are mainly, not the McKay correspondence over global fields itself, but deepening our understanding of the McKay correspondence over local fields, which would play an important role to study the case of global fields. We obtained results about the McKay correspondence for cyclic group of prime power order and the McKay correspondence for non-linear actions as well as about the moduli space of Galois extensions of a power series field. By closely related methods, we obtained also the finiteness of local fundamental group of 2-dimensional KLT singularities in arbitrary characteristic. We held two international workshops and promoted sharing of research information.

Academic Significance and Societal Importance of the Research Achievements

大域体や局所体のような数論的体上のMcKay対応を研究することで、整数論と特異点論を結ぶ新しい橋をかけることが期待できる。整数論と特異点論は、それぞれ整数と特異点という非常に基本的な研究対象を扱うため、様々な研究分野と関連する重要な分野である。本研究課題は、この2つの研究領域の融合分野に関するものだったが、得られた成果により両分野の結びつきをより強くすることができた。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (12 results)

All 2021 2020 2019 Other

All Int'l Joint Research (1 results) Presentation (9 results) (of which Int'l Joint Research: 7 results,  Invited: 9 results) Funded Workshop (2 results)

  • [Int'l Joint Research] the University of Florence(イタリア)

    • Related Report
      2019 Research-status Report
  • [Presentation] Stringy motives and local fundamental groups of klt surface singularities in arbitrary characteristic2021

    • Author(s)
      Takehiko Yasuda
    • Organizer
      Zoom Algebraic Geometry Seminar
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] The motivic McKay correspondence in arbitrary characteristics2020

    • Author(s)
      Takehiko Yasuda
    • Organizer
      The McKay correspondence, mutation and related topics
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 位数$p^2$の巡回群による商特異点2020

    • Author(s)
      安田健彦
    • Organizer
      Singularity Seminar
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Quotient singularities via stringy motives2020

    • Author(s)
      Takehiko Yasuda
    • Organizer
      Quantum Math, Singularities and Applications
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] The wild McKay correspondence of arbitrary finite grouops2019

    • Author(s)
      Takehiko Yasuda
    • Organizer
      月曜特異点セミナー
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 野性McKay対応概説 -数論的視点と最新成果-2019

    • Author(s)
      Takehiko Yasuda
    • Organizer
      第27回整数論サマースクール
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] The wild McKay correspondence for an arbitrary finite group2019

    • Author(s)
      Takehiko Yasuda
    • Organizer
      Interaction Between Algebraic Geometry and QFT
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] The wild McKay correspondence for an arbitrary finite group2019

    • Author(s)
      Takehiko Yasuda
    • Organizer
      RIMS & OIST Workshop: On the Problem of Resolution of Singularities and its Vicinity
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] The wild McKay correspondence for an arbitrary finite group2019

    • Author(s)
      Takehiko Yasuda
    • Organizer
      On the Problem of Resolution of Singularities and its Vicinity
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Funded Workshop] Singularities and Arithmetics2020

    • Related Report
      2019 Research-status Report
  • [Funded Workshop] 高次元代数多様体の有理点2019

    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-07-25   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi