Project/Area Number |
18K18868
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 21:Electrical and electronic engineering and related fields
|
Research Institution | National Institute for Materials Science |
Principal Investigator |
TSUKAGOSHI Kazuhito 国立研究開発法人物質・材料研究機構, 国際ナノアーキテクトニクス研究拠点, MANA主任研究者 (50322665)
|
Project Period (FY) |
2018-06-29 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Fiscal Year 2019: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2018: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
|
Keywords | 分子ナノ薄膜 / 強誘電特性 / 分子挙動 / 分子厚結晶 / 誘電特性 |
Outline of Final Research Achievements |
Piezoelectric response of P(VDF-TrFE), which is modulated by the dipole density due to the polarization switching on applying an electric field, allows it act as the fundamental components for electromechanical systems. The nanoscale thickness of the organic ferroelectric film stabilizes the α-phase instead of the β-phase, and the α-phase film can be expected to exhibit large dielectric properties and fast external response that exceed the conventional limits. In ferroelectric films, dipoles interact in the grain to give rise to the overall electrical properties, so a single grain should be the ideal efficient ferroelectric film.Therefore, we explored formation of large continuous grain film with uniform film by creating an atomically flat surface. In addition, we have attempted to fabricate a stacked structure of this film with a semiconductor film to show the characteristics.
|
Academic Significance and Societal Importance of the Research Achievements |
電子素子として求められるメモリー機能は,無くてはならない。従来の半導体素子では、無機材料で構成されているために、素子作製工程での印加温度は通常基板となるSiの限界温度付近までである。しかしながら、昨今のフレキシブルエレクトロニクスでは、基板は有機ポリマーであり、200℃程度が限界であり、従来の無機材料が使えない。このため、有機膜強誘電膜での強誘電メモリー素子実現に期待されて、研究されている。強誘電特性を得るために100nm程度の厚膜を使うことが一般的であるが、P(VDF-TrFE)膜は成膜制御が難しく、膜厚がばらつき、局所的な特性分布が大きい。本研究では、ナノ膜での機能化の発現を実証出来た。
|