Project/Area Number |
18K19059
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 32:Physical chemistry, functional solid state chemistry, and related fields
|
Research Institution | Nara Institute of Science and Technology |
Principal Investigator |
Katsuki Hiroyuki 奈良先端科学技術大学院大学, 先端科学技術研究科, 准教授 (10390642)
|
Project Period (FY) |
2018-06-29 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2018: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
|
Keywords | 振動ポラリトン / 強結合状態 / 化学反応制御 / 中赤外レーザー / 強結合 / ポラリトン / コヒーレント制御 / 赤外振動分光 / 光反応 |
Outline of Final Research Achievements |
We have successfully established the techniques to observe the vibrational polariton states. The vibrational polariton is a quasi-particle which is generated by the strong coupling between the mid infrared cavity photon and the vibrational transition of a target molecule. By using quartz plates coated with Au and protection layer as cavity mirrors, we have observed the FTIR transmission spectrum using DPPA liquid as a test sample. When the cavity length is tuned to ~12um, the resonance between the vibrational transition and cavity mode is realized, and we could observe the splitting of the lines. By tuning the incident angle, we could measure the dispersion relation for the upper and lower polariton branches. From the analysis, we derived the Rabi splitting parameter. We have done the preparation for the ultrafast experiment in parallel. A mid infrared femtosecond light is prepared by difference frequency generation, and its spectrum is observed with MCT detector.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は、キャビティの存在によって分子のポテンシャル表面を変調させて、分子内で起こる化学反応などを外部から制御することを目指している。キャビティという周囲環境の存在だけで、従来強電場や局所電場などを作用させることで行なっていたポテンシャルの変調を容易に行えるようになれば、化学反応制御の実現に向けてその応用も期待される。 今回の結果で、振動ポラリトンの実現が確認され、その測定手法について試料、キャビティの準備について様々なノウハウを蓄積できた。近年、キャビティによる化学反応速度の変化が実際に報告されており、そのメカニズムについて超短パルスを用いて波束の運動を追跡する実験には大きな価値がある。
|