• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Promotion of learning process of deep learning by interference

Research Project

Project/Area Number 18K19785
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 60:Information science, computer engineering, and related fields
Research InstitutionOsaka Prefecture University

Principal Investigator

Iwamura Masakazu  大阪府立大学, 工学(系)研究科(研究院), 准教授 (80361129)

Project Period (FY) 2018-06-29 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥5,720,000 (Direct Cost: ¥4,400,000、Indirect Cost: ¥1,320,000)
Keywords深層学習 / 物体認識 / 学習の阻害 / 正則化
Outline of Final Research Achievements

In this research, on the regularization method we have proposed and named ShakeDrop which improves the accuracy of object recognition (aka, image classification) using "interference of learning process," we have completed (1) improvement of learning ability, (2) development of a method that requires less training data, and (3) unraveling the mechanism.
Through various experiments, we have shown (1) and (2) hold.
Regarding (3), we have got an explanation that "promotion of learning process of deep learning by interference" is achieved by data augmentation in the feature space.

Academic Significance and Societal Importance of the Research Achievements

ShakeDropは、物体認識のためのデータベースであるCIFAR-100において、一時世界最高精度を達成した正則化手法である。現在は他の手法がより良い精度を達成しているが、現在最高精度を達成している手法も最高精度を達成するためにShakeDropを使用している。
本研究では、ShakeDropのメカニズムを解明し、更にShakeDropが前述のCIFAR-100データベース以外においても高い認識精度を達成できることを実験的に示した。

Report

(3 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • Research Products

    (3 results)

All 2019 2018

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (2 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] ShakeDrop Regularization for Deep Residual Learning2019

    • Author(s)
      Yoshihiro Yamada, Masakazu Iwamura, Takuya Akiba, Koichi Kise
    • Journal Title

      IEEE Access

      Volume: 7 Pages: 186126-186136

    • DOI

      10.1109/access.2019.2960566

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] ShakeDrop Regularization2018

    • Author(s)
      Yoshihiro Yamada, Masakazu Iwamura, Koichi Kise
    • Organizer
      6th International Conference on Learning Representation (ICLR) Workshop
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] ResNetsに対する新たな正則化手法ShakeDropの提案2018

    • Author(s)
      山田良博, 岩村雅一, 黄瀬浩一
    • Organizer
      第21回画像の認識・理解シンポジウム(MIRU2018)
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-07-25   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi