• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

End-to-End Automatic Speech Recognition for the Archive of Ainu Folklore

Research Project

Project/Area Number 18K19814
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 61:Human informatics and related fields
Research InstitutionKyoto University

Principal Investigator

Kawahara Tatsuya  京都大学, 情報学研究科, 教授 (00234104)

Co-Investigator(Kenkyū-buntansha) 奥田 統己  札幌学院大学, 人文学部, 教授 (60224151)
Project Period (FY) 2018-06-29 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Fiscal Year 2019: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2018: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Keywordsアイヌ語 / 音声認識 / 音声合成 / 消滅危機言語 / End-to-Endモデル
Outline of Final Research Achievements

We have investigated automatic speech recognition (ASR) of Ainu folklores (Uwepeker). First, we constructed an Ainu speech corpus for the Saru dialect based on data provided by two museums which have constructed Ainu archive. Next, we built an ASR system based on the end-to-end model, and compared four recognition units of phones, syllables, word pieces, and words. With the syllable unit, we achieved phone recognition accuracy of 93.7% and word recognition accuracy of 78.3%. To address the problem of significant degradation in the speaker-open condition, an unsupervised speaker adaptation method using CycleGAN is proposed. Finally, we also implemented language identification in Japanese and Ainu mixed speech by combining phone and word recognition modules.

Academic Significance and Societal Importance of the Research Achievements

アイヌ文化の多くが口頭で継承されてきましたが、アイヌ語は2009年にUNESCOにより「極めて深刻な」消滅危機言語に認定される事態となっています。以前から口頭伝承を録音・記録する活動が様々に行われてきたが、その書き起こし・アーカイブ化には膨大な手間とアイヌ語の知識を必要とするため、多くが未整備のままでした。
本研究により、アイヌ語のアーカイブ構築の効率化への寄与が期待されます。実際に、アイヌ民族博物館において音声と書き起こし同期のための対応付けに活用され、1時間のデータに対して、人手で1日要する作業がほぼ完全に自動化できました。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (13 results)

All 2021 2020 2019 2018 Other

All Presentation (12 results) (of which Int'l Joint Research: 7 results) Remarks (1 results)

  • [Presentation] 日本語アイヌ語混合音声における言語識別.2021

    • Author(s)
      松浦孝平, 三村正人, 坂井信輔, 河原達也.
    • Organizer
      日本音響学会研究発表会(春季)
    • Related Report
      2020 Annual Research Report
  • [Presentation] Speech corpus of Ainu folklore and end-to-end speech recognition for Ainu language.2020

    • Author(s)
      K.Matsuura, S.Ueno, M.Mimura, S.Sakai, and T.Kawahara.
    • Organizer
      Int'l Conf. Language Resources & Evaluation (LREC)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Generative adversarial training data adaptation for very low-resource automatic speech recognition.2020

    • Author(s)
      K.Matsuura, M.Mimura, S.Sakai, and T.Kawahara.
    • Organizer
      INTERSPEECH
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 低資源言語音声認識における敵対的声質変換を用いた教師なし話者適応学習.2020

    • Author(s)
      松浦孝平, 三村正人, 坂井信輔, 河原達也.
    • Organizer
      日本音響学会研究発表会(秋季)
    • Related Report
      2020 Annual Research Report
  • [Presentation] 民話を対象としたアイヌ語音声コーパスとend-to-end音声認識2019

    • Author(s)
      松浦孝平, 上乃聖, 三村正人, 坂井信輔, 河原達也
    • Organizer
      情報処理学会研究報告 SLP-130-16
    • Related Report
      2019 Research-status Report
  • [Presentation] End-to-endモデルに基づくアイヌ語音声認識におけるクロスリンガル話者拡張敵対学習2019

    • Author(s)
      松浦孝平, 上乃聖, 三村正人, 坂井信輔, 河原達也
    • Organizer
      日本音響学会研究発表会講演論文集
    • Related Report
      2019 Research-status Report
  • [Presentation] Multi-lingual transformer training for Khmer automatic speech recognition2019

    • Author(s)
      K.Soky, S.Li, T.Kawahara, and S.Seng
    • Organizer
      APSIPA ASC
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Multi-speaker sequence-to-sequence speech synthesis for data augmentation in acoustic-to-word speech recognition2019

    • Author(s)
      S.Ueno, M.Mimura, S.Sakai, and T.Kawahara
    • Organizer
      IEEE-ICASSP
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] End-to-endモデルに基づくアイヌ語の音声認識.2019

    • Author(s)
      松浦孝平, 三村正人, 上乃聖, 坂井信輔, 河原達也.
    • Organizer
      日本音響学会研究発表会
    • Related Report
      2018 Research-status Report
  • [Presentation] Leveraging sequence-to-sequence speech synthesis for enhancing acoustic-to-word speech recognition.2018

    • Author(s)
      M.Mimura, S.Ueno, H.Inaguma, S.Sakai, and T.Kawahara.
    • Organizer
      IEEE Spoken Language Technology Workshop (SLT)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Improving OOV detection and resolution with external language models in acoustic-to-word ASR.2018

    • Author(s)
      H.Inaguma, M.Mimura, S.Sakai, and T.Kawahara.
    • Organizer
      IEEE Spoken Language Technology Workshop (SLT)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Acoustic-to-word attention-based model complemented with character-level CTC-based model.2018

    • Author(s)
      S.Ueno, H.Inaguma, M.Mimura, and T.Kawahara.
    • Organizer
      IEEE-ICASSP
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Remarks] 人工知能によるアイヌ語の自動音声認識・合成に成功(AINU語AI)

    • URL

      https://www.kyoto-u.ac.jp/ja/research-news/2020-10-15-0

    • Related Report
      2020 Annual Research Report

URL: 

Published: 2018-07-25   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi