• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of Automated Cellular Video Image Processing Technology Using Reinforcement Learning via Simulation and GAN

Research Project

Project/Area Number 18K19842
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 62:Applied informatics and related fields
Research InstitutionOsaka University

Principal Investigator

Seno Shigeto  大阪大学, 情報科学研究科, 准教授 (30432462)

Co-Investigator(Kenkyū-buntansha) 間下 以大  大阪大学, サイバーメディアセンター, 准教授 (00467606)
Project Period (FY) 2018-06-29 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Fiscal Year 2019: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2018: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Keywordsバイオイメージインフォマティクス / 強化学習 / 深層学習
Outline of Final Research Achievements

With the recent development of microscopy technology, images and movies have been produced every day. The methods and purposes of bio-imaging are diverse, but in the case of analyzing images of moving cells, cell recognition and spatio-temporal tracking are universal tasks for extracting information from the images. Traditionally, these tasks have been handled by human tracking or by algorithms that have been developed respectively.
In this study, we developed a method that uses deep learning and reinforcement learning methods to simulate a moving image from the correct solution and use the data to learn the task of cell tracking.

Academic Significance and Societal Importance of the Research Achievements

細胞の移動軌跡のシミュレーションと敵対的生成ネットワーク(GAN) を用いて、少数の正解付き訓練データから類似した疑似データを自動生成する方法の開発を行った。本研究では細胞動画像を対象とした研究を行ったが,シミュレーションとGANによる仮想動画の生成と、それを介した強化学習によって必要なタスクを獲得することができれば、様々な分野での応用が期待できる。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (8 results)

All 2020 2019 2018

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (6 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] Tracking and Analysis of FUCCI-Labeled Cells Based on Particle Filters and Time-to-Event Analysis.2020

    • Author(s)
      Fujimoto, K., Seno, S., Shigeta, H., Mashita, T., Ishii, M., Matsuda, H.
    • Journal Title

      Int J Biosci Biochem Bioinforma.

      Volume: 10 Issue: 2 Pages: 94-109

    • DOI

      10.17706/ijbbb.2020.10.2.94-109

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 生体蛍光観察動画像の深度を考慮した深層学習による細胞追跡精度の改善2019

    • Author(s)
      嶋田 彩人 , 瀬尾 茂人 , 繁田 浩功 , 間下 以大 , 内田 穣 , 石井 優 , 松田 秀雄
    • Journal Title

      情報処理学会論文誌数理モデル化と応用

      Volume: 12 Pages: 82-91

    • NAID

      170000150463

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] A method for tracking cell migration in vivo based on deep learning with target detection2020

    • Author(s)
      Tsubasa Mizugaki, Utkrisht Rajkumar, Kenji Fujimoto, Hironori Shigeta, Shigeto Seno, Yutaka Uchida, Masaru Ishii, Vineet Bafna, Hideo Matsuda
    • Organizer
      28th Conference on Intelligent Systems for Molecular Biology (ISMB)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] DNN models and postprocessing thresholds for endoscopy artifact detection in practice2019

    • Author(s)
      Seiryo Watanabe, Shigeto Seno, Hideo Matsuda
    • Organizer
      CEUR Workshop Proceedings
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Data Augmentation for Immune Cell Tracking using Random Walk Models and Generative Adversarial Networks2019

    • Author(s)
      Kenji Fujimoto, Shigeto Seno, Hironori Shigeta, Tomohiro Mashita, Yutaka Uchida, Masaru Ishii, Hideo Matsuda
    • Organizer
      Bioimage Informatics 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 細胞画像の領域分割のための敵対的生成ネットワークを用いた訓練データ生成手法2019

    • Author(s)
      藤本健二, 瀬尾茂人, 渡邊誓旅, 繁田浩功, 間下以大, 松田秀雄
    • Organizer
      第22回 画像の認識・理解シンポジウム (MIRU2019)
    • Related Report
      2019 Research-status Report
  • [Presentation] 生体蛍光観察動画像の深度を考慮した 深層学習による細胞追跡精度の改善2019

    • Author(s)
      嶋田彩人, 瀬尾茂人, 繁田浩功, 間下以大, 内田穣, 石井優, 松田秀雄
    • Organizer
      第122回数理モデル化と問題解決研究発表会
    • Related Report
      2018 Research-status Report
  • [Presentation] 細胞画像のセグメンテーション精度向上のための画像類推を用いた学習データ拡張2018

    • Author(s)
      赤沢秀樹, 渡邊誓旅, 繁田浩功, 間下以大, 瀬尾茂人, 松田秀雄
    • Organizer
      画像の認識・理解シンポジウム(MIRU2018)
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-07-25   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi