• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

High dimensional deformations of linear representations and distribution and complexity of essential surfaces

Research Project

Project/Area Number 18KK0380
Research Category

Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))

Allocation TypeMulti-year Fund
Review Section Basic Section 11020:Geometry-related
Research InstitutionThe University of Tokyo

Principal Investigator

KITAYAMA Takahiro  東京大学, 大学院数理科学研究科, 准教授 (10700057)

Project Period (FY) 2019 – 2022
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥15,600,000 (Direct Cost: ¥12,000,000、Indirect Cost: ¥3,600,000)
Keywords3次元多様体 / 位相不変量 / 表現 / 交叉形式
Outline of Research at the Start

基本群の高次元線形表現のなす空間とその上の関数を与えるトーション不変量の情報から、3次元多様体を本質的に分解する部分曲面の分布の様子と複雑さを究明する。特に、表現の次元の変化に伴う線形表現のなす空間の振る舞いに着目することで、多様体の境界への表現空間の制限から本質的部分曲面の境界となるループの全体を捉える研究と幾何学的な線形表現に付随するトーション不変量から本質的部分曲面全体の複雑さを測る研究を行う。

Outline of Final Research Achievements

We studied deformations of linear representations of the fundamental group and corresponding behaviors of topological invariants in order to describe distribution and complexity of subsurfaces essentially decomposing a 3-manifold. On twisted Alexander polynomials we showed for a certain class of groups including 3-manifold groups a generalization of the fact that the Thurston norm is uniformly detected, and discovered an obstruction for two knots to be ribbon concordant. On the Blanchfield form we gave a lower bound on the Gordian distance of knots, and presented another proof for a formula of the topological integral 4-ball genus. From the point of view of arithmetic topology we introduced analogues of algebraic p-adic L-functions associated with universal deformations of representations of a knot group.

Academic Significance and Societal Importance of the Research Achievements

本研究は、線形表現のなす空間の幾何学の低次元トポロジーへの応用を基礎付けるとともに、当研究領域の育成を図るものである。本研究によって、表現に付随する位相不変量による3次元多様体のトポロジーの理解が進展し、それら不変量の新たな応用が提示された。また、本研究は4次元トポロジーと数論的トポロジーとも関わる研究へと展開した。レーゲンスブルク大学におけるStefan Friedl氏との共同研究を通じて、当該分野における今後の国際的連携の基盤構築に繋がる学術交流を深めることができた。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (12 results)

All 2022 2021 2020 2019 Other

All Int'l Joint Research (1 results) Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (6 results) (of which Int'l Joint Research: 3 results,  Invited: 6 results) Remarks (1 results)

  • [Int'l Joint Research] レーゲンスブルク大学(ドイツ)2019

    • Related Report
      2022 Annual Research Report
  • [Journal Article] A survey of the Thurston norm2022

    • Author(s)
      Takahiro Kitayama
    • Journal Title

      In the Tradition of Thurston II

      Volume: - Pages: 149-199

    • DOI

      10.1007/978-3-030-97560-9_5

    • ISBN
      9783030975593, 9783030975609
    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] On Adjoint Homological Selmer Modules for SL2-Representations of Knot Groups2022

    • Author(s)
      Kitayama Takahiro、Morishita Masanori、Tange Ryoto、Terashima Yuji
    • Journal Title

      International Mathematics Research Notices

      Volume: 255 Issue: 23 Pages: 19801-19826

    • DOI

      10.1093/imrn/rnac255

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Homotopy ribbon concordance, Blanchfield pairings, and twisted Alexander polynomials2021

    • Author(s)
      Friedl Stefan、Kitayama Takahiro、Lewark Lukas、Nagel Matthias、Powell Mark
    • Journal Title

      Canadian Journal of Mathematics

      Volume: - Issue: 4 Pages: 1-40

    • DOI

      10.4153/s0008414x21000183

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Character varieties of higher dimensional representations and splittings of 3-manifolds2021

    • Author(s)
      Hara Takashi、Kitayama Takahiro
    • Journal Title

      Geometriae Dedicata

      Volume: ー Issue: 1 Pages: 433-466

    • DOI

      10.1007/s10711-020-00590-y

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] Torsion polynomial functions and essential surfaces2022

    • Author(s)
      Takahiro Kitayama
    • Organizer
      Se'minaire GT3, Institut de Recherche Mathe'matique Avance'e
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] リボンコンコーダンスとねじれAlexander多項式2021

    • Author(s)
      北山貴裕
    • Organizer
      N-KOOKセミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Ribbon concordance and twisted Alexander polynomials2021

    • Author(s)
      北山貴裕
    • Organizer
      トポロジーとコンピュータ 2021
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Representations of fundamental groups and 3-manifold topology2020

    • Author(s)
      Takahiro Kitayama
    • Organizer
      理化学研究所数理創造プログラム数学セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Character varieties and essential surfaces2019

    • Author(s)
      Takahiro Kitayama
    • Organizer
      Low-Dimensional Topology Workshop 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Twisted Alexander polynomials and L^2-Euler characteristics2019

    • Author(s)
      Takahiro Kitayama
    • Organizer
      Global Analysis Seminar, University of Regensburg
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] 北山研究室ホームページ

    • URL

      https://www.ms.u-tokyo.ac.jp/~kitayama/index_j.html

    • Related Report
      2022 Annual Research Report 2021 Research-status Report 2019 Research-status Report

URL: 

Published: 2019-02-06   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi