• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Toward a unified understanding of general hypergeometric functions and general Schlesinger system by twistor theory

Research Project

Project/Area Number 19340041
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionKumamoto University

Principal Investigator

KIMURA Hironobu  Kumamoto University, 大学院・自然科学研究科, 教授 (40161575)

Co-Investigator(Kenkyū-buntansha) HARAOKA Yoshishige  熊本大学, 大学院・自然科学研究科, 教授 (30208665)
TANABE Susumu  熊本大学, 大学院・自然科学研究科, 教授 (90432997)
MISAWA Masashi  熊本大学, 大学院・自然科学研究科, 教授 (40242672)
FURUSHIMA Mikio  熊本大学, 大学院・自然科学研究科, 教授 (00165482)
OKAMOTO Kazuo  大学評価・学位授与機構, 国際連携センター, 理事 (40011720)
IWASAKI Katsunori  北海道大学, 大学院・理学研究科, 教授 (00176538)
SHIMOMURA Shun  慶応大学, 理工学部, 教授 (00154328)
KAWAMUKO Hiroyuki  三重大学, 教育学部, 准教授 (00303719)
Project Period (FY) 2007 – 2010
Project Status Completed (Fiscal Year 2010)
Budget Amount *help
¥14,950,000 (Direct Cost: ¥11,500,000、Indirect Cost: ¥3,450,000)
Fiscal Year 2010: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2009: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2008: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2007: ¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Keywords関数方程式の大域理論 / Yang-Mills / Schlesinger系 / 可積分系 / 超幾何関数 / Twistor理論 / Riemann-Hilbert問題 / 一般Schlesinger系 / Ward対応 / 一般化された反自己双対方程式 / モノドロミー保存変形 / de Rham cohomology群 / 一般超幾何関数 / 一般超幾何 / Radon変換 / de Rham理論 / 特殊関数 / 国際研究者交流 / イギリス:フランス / middle convolution / monodromy 保存変形 / Painleve equation / twistor理論
Research Abstract

We studied the theory of general hypergeometric functions(HGF) which generalize important special functions, like as Gauss hypergeometric functions, governed by linear differential equations to functions of several variables. We also studied nonlinear differential equations called general Schlesinger systems(GSS), which describe families of linear systems preserving monodromy data, from the point of view of twistor theory. For HGF, we determined the cohomology groups which are defined using the integrand of the integral representation of HGF. For GSS, we constructed its solutions expressed using HGF.

Report

(6 results)
  • 2010 Annual Research Report   Final Research Report ( PDF )
  • 2009 Annual Research Report   Self-evaluation Report ( PDF )
  • 2008 Annual Research Report
  • 2007 Annual Research Report
  • Research Products

    (32 results)

All 2011 2010 2009 2008 2007

All Journal Article (20 results) (of which Peer Reviewed: 16 results) Presentation (10 results) Book (2 results)

  • [Journal Article] On Wronskian determinant formulas of the general hypergeometric functions2011

    • Author(s)
      H.Kimura
    • Journal Title

      Tokyo J.Math. Vol.34(in press)

    • Related Report
      2010 Final Research Report
    • Peer Reviewed
  • [Journal Article] On a problem of arrangements related to the hypergeometric integrals of confluent type, Advanced Studies in Pure Mathematics2011

    • Author(s)
      H.Kimura
    • Journal Title

      Proceedings of MSJ-SI 2009 (in press)

    • Related Report
      2010 Final Research Report
    • Peer Reviewed
  • [Journal Article] Decay Property for the linear wave equations in two dimensional exterior domains2011

    • Author(s)
      T.Kobayashi, M.Misawa, S.Okamura
    • Journal Title

      Differential and Integral Equations (in press)

    • Related Report
      2010 Final Research Report
    • Peer Reviewed
  • [Journal Article] 特殊関数の諸問題-パンルヴェ性をめぐって-複素幾何学の諸問題2011

    • Author(s)
      岩崎克則
    • Journal Title

      数理研講究録 1731

      Pages: 1-13

    • Related Report
      2010 Final Research Report
  • [Journal Article] On Wronskian determinant formulas of the general hypergeometric functions2011

    • Author(s)
      Hironobu Kimura
    • Journal Title

      Tokyo Journal of Mathematics

      Volume: 34(掲載決定)

    • Related Report
      2010 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On a problem of arrangements related to the hypergeometric integrals of confluent type2011

    • Author(s)
      Hironobu Kimura
    • Journal Title

      Advanced Studies in Pure Mathematics(ASPM)"Proceedings of MSJ-SI 2009"

      Volume: (掲載決定)

    • Related Report
      2010 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the Markoff-Painleve transcendent,複素力学系とその関連分野の総合的研究2010

    • Author(s)
      岩崎克則
    • Journal Title

      数理講究録 1699

      Pages: 160-167

    • NAID

      110007672828

    • Related Report
      2010 Final Research Report
  • [Journal Article] Analogue of Ward correspondence for a degenerated Schlesinger system2009

    • Author(s)
      H.Kimura, Y.Nakamura
    • Journal Title

      Kumamoto J.Math. Vol.22

      Pages: 35-41

    • NAID

      110009930094

    • Related Report
      2010 Final Research Report
    • Peer Reviewed
  • [Journal Article] General Schlesinger systems and their hypergeometric solutions2009

    • Author(s)
      H.Kimura
    • Journal Title

      数理解析研究所講究録 Vol.1662

      Pages: 218-230

    • Related Report
      2010 Final Research Report
  • [Journal Article] Analogue of Ward correspondence for a degenerated Schlesinger system2009

    • Author(s)
      Hironobu Kimura, Yoshikatsu Nakamura
    • Journal Title

      Kumamoto Journal of Mathematics 22

    • NAID

      110009930094

    • Related Report
      2009 Self-evaluation Report
    • Peer Reviewed
  • [Journal Article] General Schlesinger systems and their hypergeometric solutions2009

    • Author(s)
      Hironobu Kimura
    • Journal Title

      数理解析研究所講究録 1662

      Pages: 218-230

    • Related Report
      2009 Annual Research Report 2009 Self-evaluation Report
  • [Journal Article] Analogue of Ward correspondence for a degenerated Schlesinger system2009

    • Author(s)
      H.Kimura, Y.Nakamura
    • Journal Title

      Kumamoto Journal of Mathematics 22

      Pages: 35-41

    • NAID

      110009930094

    • Related Report
      2009 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Middle convolution and deformation for Fuchsian systems2007

    • Author(s)
      Y.Haraoka, G.Filipuk
    • Journal Title

      J.London Math.Soc. Vol.76

      Pages: 438-450

    • Related Report
      2010 Final Research Report
    • Peer Reviewed
  • [Journal Article] An ergodic study of Painleve VI2007

    • Author(s)
      K.Iwasaki, T.Uehara
    • Journal Title

      Mathematische Annalen Vol.338

      Pages: 295-345

    • Related Report
      2010 Final Research Report
    • Peer Reviewed
  • [Journal Article] A class of differential equations of PI-type with the quasi-2007

    • Author(s)
      Shun Shimomura
    • Journal Title

      Painleve property Vol.186

      Pages: 267-280

    • Related Report
      2010 Final Research Report
    • Peer Reviewed
  • [Journal Article] Middle convolution and deformation for Fuchsian systems2007

    • Author(s)
      Yoshishige Haraoka, Galina Filipuk
    • Journal Title

      J.London Math.Soc. 76

      Pages: 438-450

    • Related Report
      2009 Self-evaluation Report
    • Peer Reviewed
  • [Journal Article] An ergodic study of Painleve VI2007

    • Author(s)
      K. Iwasaki, T. Uehara
    • Journal Title

      Mathematische Annalen 338

      Pages: 295-345

    • Related Report
      2009 Self-evaluation Report
    • Peer Reviewed
  • [Journal Article] Middle convolution and deformation for Fuchsian systems2007

    • Author(s)
      Yoshishige Haraoka
    • Journal Title

      J.London Math.Soc. 76

      Pages: 438-450

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] An ergodic study of Painleve VI2007

    • Author(s)
      K.Iwasaki
    • Journal Title

      Mathematische Annalen 338

      Pages: 295-345

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A class of differential equations of PI-type with the quasi-Painlev\'eproperty2007

    • Author(s)
      Shun Shimomura
    • Journal Title

      Ann.Mat.Pura Appl. 186

      Pages: 267-280

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Presentation] パンルヴェ性をめぐって2011

    • Author(s)
      岩崎克則
    • Organizer
      アクセサリー・パラメーター研究会
    • Place of Presentation
      熊本大学理学部
    • Year and Date
      2011-03-17
    • Related Report
      2010 Final Research Report
  • [Presentation] 複素曲面上の正則力学系について2010

    • Author(s)
      岩崎克則
    • Organizer
      複素解析的ベクトル場・葉層構造とその周辺
    • Place of Presentation
      龍谷大学セミナーハウス,京都
    • Year and Date
      2010-11-28
    • Related Report
      2010 Final Research Report
  • [Presentation] Dynamics of the sixth Painleve equation2010

    • Author(s)
      岩崎克則
    • Organizer
      4th Workshop on Hamiltonian systems and related topics
    • Place of Presentation
      Niigata University Satellite Campus
    • Year and Date
      2010-10-15
    • Related Report
      2010 Final Research Report
  • [Presentation] 特殊関数の諸問題2010

    • Author(s)
      岩崎克則
    • Organizer
      複素幾何学の諸問題
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2010-09-06
    • Related Report
      2010 Final Research Report
  • [Presentation] パンルヴェ方程式の代数解析と力学系2010

    • Author(s)
      岩崎克則
    • Organizer
      北大談話会
    • Place of Presentation
      北海道大学理学部
    • Year and Date
      2010-05-20
    • Related Report
      2010 Final Research Report
  • [Presentation] On a problem of arrangements related to the hypergeometric integrals of confluent type2009

    • Author(s)
      木村弘信
    • Organizer
      The 2nd MSJ-MI「Arrangements of Hyperplanes」
    • Place of Presentation
      北海道大学
    • Year and Date
      2009-08-11
    • Related Report
      2010 Final Research Report
  • [Presentation] On a problem of arrangements related to the hypergeometric integrals of confluent type2009

    • Author(s)
      木村弘信
    • Organizer
      The 2^<nd> MSJ-MI「Arrangements of Hyperplanes」
    • Place of Presentation
      北海道大学
    • Year and Date
      2009-08-11
    • Related Report
      2009 Annual Research Report 2009 Self-evaluation Report
  • [Presentation] On the Schlesinger systems and their particular solutions of hypergeometric type2008

    • Author(s)
      木村弘信
    • Organizer
      Journees Franco-Japonaises en l'honneur de Kazuo Okamoto : Autour des Equations de Painleve
    • Place of Presentation
      Strasbourg, France
    • Year and Date
      2008-11-13
    • Related Report
      2009 Self-evaluation Report
  • [Presentation] Schlesinger systems and particular solutions of hypergeometric type2008

    • Author(s)
      木村 弘信
    • Organizer
      Journees Franco-Japonaises en l'honneur de Kazuo okamoto : Autour des Equations de Painleve
    • Place of Presentation
      ルイ・パスツール大学, ストラスブール, フランス
    • Year and Date
      2008-11-13
    • Related Report
      2008 Annual Research Report
  • [Presentation] モノドロミー保存変形とTwistor理論2007

    • Author(s)
      木村弘信
    • Organizer
      微分方程式の総合的研究
    • Place of Presentation
      東京大学
    • Year and Date
      2007-12-15
    • Related Report
      2010 Final Research Report 2007 Annual Research Report
  • [Book] 超幾何関数入門2007

    • Author(s)
      木村弘信
    • Publisher
      サイエンス社
    • Related Report
      2010 Final Research Report
  • [Book] 超幾何関数入門2007

    • Author(s)
      木村 弘信
    • Total Pages
      185
    • Publisher
      サイエンス社
    • Related Report
      2007 Annual Research Report

URL: 

Published: 2007-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi