Particle systems with interaction
Project/Area Number |
19540114
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
General mathematics (including Probability theory/Statistical mathematics)
|
Research Institution | Chiba University |
Principal Investigator |
TANEMURA Hideki Chiba University, 大学院・理学研究科, 教授 (40217162)
|
Co-Investigator(Kenkyū-buntansha) |
KONNO Norio 横浜国立大学, 工学研究院, 教授 (80205575)
KATORI Makoto 中央大学, 理工学部, 教授 (60202016)
SASAMOTO Tomohiro 千葉大学, 大学院・理学研究科, 准教授 (70332640)
|
Project Period (FY) |
2007 – 2010
|
Project Status |
Completed (Fiscal Year 2010)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2010: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2009: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2008: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2007: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 確率過程 / 無限粒子系 / ランダム行列 / 非衝突過程 / ダイソン模型 / ベッセル過程 / 拡散過程 / 行列値過程 / Sturm-Liouville作用素 / パフィアン過程 / 彷徨過程 |
Research Abstract |
A stochastic process is called determinantal if its correlation functions are represented by determinants. During the research we proved that for any fixed configuration the noncolliding Brownian motion and the noncolliding squared Bessel process are determinantal. When number of particle is infinite, we gave sufficient conditions so that the noncolliding processes are exist and have continuous paths. We also showed the relaxation phenomena for the processes.
|
Report
(6 results)
Research Products
(34 results)