The homeomorphism Problem of families of functions of several variables and the data compression problem of multidimensional numerical tables
Project/Area Number |
19540148
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
General mathematics (including Probability theory/Statistical mathematics)
|
Research Institution | Tokyo University of Science |
Principal Investigator |
AKASHI Shigeo Tokyo University of Science, 理工学部, 教授 (30202518)
|
Project Period (FY) |
2007 – 2009
|
Project Status |
Completed (Fiscal Year 2009)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2009: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2008: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2007: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | Hilbertの第13問題 / ε-entropy / データ圧縮問題 / 多次元数値表ε-拡大的力学系 / 完全不連結空間 / 同型問題 / 埋蔵問題 / ε-エントロピー / 重ねあわせ表現 / Kolmogorov-Arnoldの表現定理 / Vituskinの定理 / 強(弱)表現可能性 / 強(弱)表現不可能性 / 記号力学系 / データ圧縮 / Kolmogorov-Arnoldの定理 / Cauchyの積分定理 / ベクトルの外積 / 形状認識 / 隣接点判定法 / Jordanの閉曲線定理 / 2次元数値表 |
Research Abstract |
A series of my interdisciplinary research papers are mainly situated on the boundary between mathematics and computer science, because I think that mutual application of each other's good quality is important. More exactly speaking, my research papers can be divided into the following two parts : 1. Unsolved problems derived from the 13^<th> problem formulated by D. Hilbert. 2. Homeomorphism problems of ε-expansive dynamical systems on totally disconnected compact Hausdorff metric spaces.
|
Report
(4 results)
Research Products
(26 results)